AoPS Community

Canada National Olympiad 2006
www.artofproblemsolving.com/community/c5051
by N.T.TUAN, mathangel

1 Let $f(n, k)$ be the number of ways of distributing k candies to n children so that each child receives at most 2 candies. For example $f(3,7)=0, f(3,6)=1, f(3,4)=6$. Determine the value of $f(2006,1)+f(2006,4)+\ldots+f(2006,1000)+f(2006,1003)+\ldots+f(2006,4012)$.

2 Let $A B C$ be acute triangle. Inscribe a rectangle $D E F G$ in this triangle such that $D \in A B, E \in$ $A C, F \in B C, G \in B C$. Describe the locus of (i.e., the curve occupied by) the intersections of the diagonals of all possible rectangles $D E F G$.

3 In a rectangular array of nonnegative reals with m rows and n columns, each row and each column contains at least one positive element. Moreover, if a row and a column intersect in a positive element, then the sums of their elements are the same. Prove that $m=n$.

4 Consider a round-robin tournament with $2 n+1$ teams, where each team plays each other team exactly one. We say that three teams X, Y and Z, form a cycle triplet if X beats Y, Y beats Z and Z beats X. There are no ties.
a) Determine the minimum number of cycle triplets possible.
b)Determine the maximum number of cycle triplets possible.

5 The vertices of a right triangle $A B C$ inscribed in a circle divide the circumference into three arcs. The right angle is at A, so that the opposite arc $B C$ is a semicircle while arc $B C$ and arc $A C$ are supplementary. To each of three arcs, we draw a tangent such that its point of tangency is the mid point of that portion of the tangent intercepted by the extended lines $A B, A C$. More precisely, the point D on arc $B C$ is the midpoint of the segment joining the points D^{\prime} and $D^{\prime \prime}$ where tangent at D intersects the extended lines $A B, A C$. Similarly for E on $\operatorname{arc} A C$ and F on arc $A B$. Prove that triangle $D E F$ is equilateral.

