

AoPS Community

Canada National Olympiad 2013

www.artofproblemsolving.com/community/c5058 by JSGandora

1 Determine all polynomials P(x) with real coefficients such that

$$(x+1)P(x-1) - (x-1)P(x)$$

is a constant polynomial.

- **2** The sequence a_1, a_2, \ldots, a_n consists of the numbers $1, 2, \ldots, n$ in some order. For which positive integers n is it possible that the n+1 numbers $0, a_1, a_1+a_2, a_1+a_2+a_3, \ldots, a_1+a_2+\cdots+a_n$ all have different remainders when divided by n + 1?
- **3** Let *G* be the centroid of a right-angled triangle *ABC* with $\angle BCA = 90^{\circ}$. Let *P* be the point on ray *AG* such that $\angle CPA = \angle CAB$, and let *Q* be the point on ray *BG* such that $\angle CQB = \angle ABC$. Prove that the circumcircles of triangles *AQG* and *BPG* meet at a point on side *AB*.
- 4 Let *n* be a positive integer. For any positive integer *j* and positive real number *r*, define $f_j(r)$ and $g_j(r)$ by

$$f_j(r) = \min(jr, n) + \min\left(\frac{j}{r}, n\right), \text{ and } g_j(r) = \min(\lceil jr \rceil, n) + \min\left(\left\lceil \frac{j}{r} \rceil, n\right),$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. Prove that

$$\sum_{j=1}^{n} f_j(r) \le n^2 + n \le \sum_{j=1}^{n} g_j(r)$$

for all positive real numbers r.

5 Let *O* denote the circumcentre of an acute-angled triangle *ABC*. Let point *P* on side *AB* be such that $\angle BOP = \angle ABC$, and let point *Q* on side *AC* be such that $\angle COQ = \angle ACB$. Prove that the reflection of *BC* in the line *PQ* is tangent to the circumcircle of triangle *APQ*.

