AoPS Community

Germany Team Selection Test 1977

www.artofproblemsolving.com/community/c5064
by orl, Peter

1 We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \ldots \geq y_{n}$. Let $z_{1}, z_{2}, \ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}$. Prove that $\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}$ $\left(x_{i}-z_{i}\right)^{2}$.

2 Determine the polynomials P of two variables so that:
a.) for any real numbers t, x, y we have $P(t x, t y)=t^{n} P(x, y)$ where n is a positive integer, the same for all t, x, y;
b.) for any real numbers a, b, c we have $P(a+b, c)+P(b+c, a)+P(c+a, b)=0$;
c.) $P(1,0)=1$.

3 Let a_{1}, \ldots, a_{n} be an infinite sequence of strictly positive integers, so that $a_{k}<a_{k+1}$ for any k. Prove that there exists an infinity of terms a_{m}, which can be written like $a_{m}=x \cdot a_{p}+y \cdot a_{q}$ with x, y strictly positive integers and $p \neq q$.

4 When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)

