

AoPS Community

Germany Team Selection Test 1977

www.artofproblemsolving.com/community/c5064 by orl, Peter

- 1 We consider two sequences of real numbers $x_1 \ge x_2 \ge ... \ge x_n$ and $y_1 \ge y_2 \ge ... \ge y_n$. Let $z_1, z_2, ..., z_n$ be a permutation of the numbers $y_1, y_2, ..., y_n$. Prove that $\sum_{i=1}^n (x_i - y_i)^2 \le \sum_{i=1}^n (x_i - z_i)^2$.
- 2 Determine the polynomials P of two variables so that:

a.) for any real numbers t, x, y we have $P(tx, ty) = t^n P(x, y)$ where *n* is a positive integer, the same for all t, x, y;

b.) for any real numbers a, b, c we have P(a + b, c) + P(b + c, a) + P(c + a, b) = 0;

c.) P(1,0) = 1.

- **3** Let a_1, \ldots, a_n be an infinite sequence of strictly positive integers, so that $a_k < a_{k+1}$ for any k. Prove that there exists an infinity of terms a_m , which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with x, y strictly positive integers and $p \neq q$.
- **4** When 4444^{4444} is written in decimal notation, the sum of its digits is *A*. Let *B* be the sum of the digits of *A*. Find the sum of the digits of *B*. (*A* and *B* are written in decimal notation.)

Art of Problem Solving is an ACS WASC Accredited School.