

AoPS Community

Germany Team Selection Test 1978

www.artofproblemsolving.com/community/c5065

by Amir Hossein

- 1 Let *E* be a set of *n* points in the plane $(n \ge 3)$ whose coordinates are integers such that any three points from *E* are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal *n*.
- 2 Let *S* be a convex quadrilateral *ABCD* and *O* a point inside it. The feet of the perpendiculars from *O* to *AB*, *BC*, *CD*, *DA* are A_1, B_1, C_1, D_1 respectively. The feet of the perpendiculars from *O* to the sides of S_i , the quadrilateral $A_iB_iC_iD_i$, are $A_{i+1}B_{i+1}C_{i+1}D_{i+1}$, where i = 1, 2, 3. Prove that S_4 is similar to S.
- **3** Let *n* be an integer greater than 1. Define

$$x_1 = n, y_1 = 1, x_{i+1} = \left[\frac{x_i + y_i}{2}\right], y_{i+1} = \left[\frac{n}{x_{i+1}}\right], \quad \text{for } i = 1, 2, \dots,$$

where [z] denotes the largest integer less than or equal to z. Prove that

$$\min\{x_1, x_2, \dots, x_n\} = \left[\sqrt{n}\right]$$

- 4 Let *B* be a set of *k* sequences each having *n* terms equal to 1 or -1. The product of two such sequences (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) is defined as $(a_1b_1, a_2b_2, \ldots, a_nb_n)$. Prove that there exists a sequence (c_1, c_2, \ldots, c_n) such that the intersection of *B* and the set containing all sequences from *B* multiplied by (c_1, c_2, \ldots, c_n) contains at most $\frac{k^2}{2^n}$ sequences.
- **5** Let *E* be a finite set of points such that *E* is not contained in a plane and no three points of *E* are collinear. Show that at least one of the following alternatives holds:

(i) E contains five points that are vertices of a convex pyramid having no other points in common with E;

(ii) some plane contains exactly three points from E.

6 A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let k be a circle with radius $r \ge 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle k that has a neighboring point lying outside k. Similarly, an exterior boundary point is a lattice point lying outside the circle k that has a neighboring point lying outside k. Similarly, an exterior boundary point is a lattice point lying outside the circle k that has a neighboring point state and the circle k. Prove that there are four more exterior boundary points than interior boundary points.

AoPS Community

1978 Germany Team Selection Test

Act of Problem Solving is an ACS WASC Accredited School.