AoPS Community

Germany Team Selection Test 1978

www.artofproblemsolving.com/community/c5065
by Amir Hossein

1 Let E be a set of n points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from E are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal n.

2 Let S be a convex quadrilateral $A B C D$ and O a point inside it. The feet of the perpendiculars from O to $A B, B C, C D, D A$ are $A_{1}, B_{1}, C_{1}, D_{1}$ respectively. The feet of the perpendiculars from O to the sides of S_{i}, the quadrilateral $A_{i} B_{i} C_{i} D_{i}$, are $A_{i+1} B_{i+1} C_{i+1} D_{i+1}$, where $i=1,2,3$. Prove that S_{4} is similar to S .

3 Let n be an integer greater than 1. Define

$$
x_{1}=n, y_{1}=1, x_{i+1}=\left[\frac{x_{i}+y_{i}}{2}\right], y_{i+1}=\left[\frac{n}{x_{i+1}}\right], \quad \text { for } i=1,2, \ldots,
$$

where $[z]$ denotes the largest integer less than or equal to z. Prove that

$$
\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=[\sqrt{n}]
$$

4 Let B be a set of k sequences each having n terms equal to 1 or -1 . The product of two such sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and ($\left.b_{1}, b_{2}, \ldots, b_{n}\right)$ is defined as $\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Prove that there exists a sequence $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ such that the intersection of B and the set containing all sequences from B multiplied by $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ contains at most $\frac{k^{2}}{2^{n}}$ sequences.
$5 \quad$ Let E be a finite set of points such that E is not contained in a plane and no three points of E are collinear. Show that at least one of the following alternatives holds:
(i) E contains five points that are vertices of a convex pyramid having no other points in common with E;
(ii) some plane contains exactly three points from E.

6 A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let k be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle k that has a neighboring point lying outside k. Similarly, an exterior boundary point is a lattice point lying outside the circle k that has a neighboring point lying inside k. Prove that there are four more exterior boundary points than interior boundary points.

