Art of Problem Solving

AoPS Community

Germany Team Selection Test 2002

www.artofproblemsolving.com/community/c5066
by orl, darij grinberg, Xell

- VAIMO 1

1 Determine the number of all numbers which are represented as $x^{2}+y^{2}$ with $x, y \in\{1,2,3, \ldots, 1000\}$ and which are divisible by 121 .

2 Prove: If x, y, z are the lengths of the angle bisectors of a triangle with perimeter 6 , than we have:

$$
\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}} \geq 1
$$

3 Determine all $(x, y) \in \mathbb{N}^{2}$ which satisfy $x^{2 y}+(x+1)^{2 y}=(x+2)^{2 y}$.

- VAIMO 2

1 Let P denote the set of all ordered pairs (p, q) of nonnegative integers. Find all functions f : $P \rightarrow \mathbb{R}$ satisfying

$$
f(p, q)= \begin{cases}0 & \text { if } p q=0 \\ 1+\frac{1}{2} f(p+1, q-1)+\frac{1}{2} f(p-1, q+1) & \text { otherwise }\end{cases}
$$

Compare IMO shortlist problem 2001, algebra A1 for the three-variable case.
2 Let A_{1} be the center of the square inscribed in acute triangle $A B C$ with two vertices of the square on side $B C$. Thus one of the two remaining vertices of the square is on side $A B$ and the other is on $A C$. Points B_{1}, C_{1} are defined in a similar way for inscribed squares with two vertices on sides $A C$ and $A B$, respectively. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

3 Prove that there is no positive integer n such that, for $k=1,2, \ldots, 9$, the leftmost digit (in decimal notation) of $(n+k)$! equals k.

