Art of Problem Solving

AoPS Community

Germany Team Selection Test 2005

www.artofproblemsolving.com/community/c5069
by darij grinberg, zhaobin, manlio, [S]unn[Y], vinoth_90_2004, Tales, Zorro, Sasha, Arne

Day 1

1 Given the positive numbers a and b and the natural number n, find the greatest among the $n+1$ monomials in the binomial expansion of $(a+b)^{n}$.

2 Let M be a set of points in the Cartesian plane, and let (S) be a set of segments (whose endpoints not necessarily have to belong to M) such that one can walk from any point of M to any other point of M by travelling along segments which are in (S). Find the smallest total length of the segments of (S) in the cases
a.) $M=\{(-1,0),(0,0),(1,0),(0,-1),(0,1)\}$.
b.) $M=\{(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)\}$.

In other words, find the Steiner trees of the set M in the above two cases.
3 Let a, b, c, d and n be positive integers such that $7 \cdot 4^{n}=a^{2}+b^{2}+c^{2}+d^{2}$. Prove that the numbers a, b, c, d are all $\geq 2^{n-1}$.

Day 2

1 Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence of real numbers satisfying the equation $a_{n}=\left|a_{n+1}-a_{n+2}\right|$ for all $n \geq 0$, where a_{0} and a_{1} are two different positive reals.
Can this sequence $a_{0}, a_{1}, a_{2}, \ldots$ be bounded?
Proposed by Mihai Blun, Romania
2 Let Γ be a circle and let d be a line such that Γ and d have no common points. Further, let $A B$ be a diameter of the circle Γ; assume that this diameter $A B$ is perpendicular to the line d, and the point B is nearer to the line d than the point A. Let C be an arbitrary point on the circle Γ, different from the points A and B. Let D be the point of intersection of the lines $A C$ and d. One of the two tangents from the point D to the circle Γ touches this circle Γ at a point E; hereby, we assume that the points B and E lie in the same halfplane with respect to the line $A C$. Denote by F the point of intersection of the lines $B E$ and d. Let the line $A F$ intersect the circle Γ at a point G, different from A.

Prove that the reflection of the point G in the line $A B$ lies on the line $C F$.

AoPS Community

2005 Germany Team Selection Test

3 Let n and k be positive integers. There are given n circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of n distinct colors so that each color is used at least once and exactly k distinct colors occur on each circle. Find all values of $n \geq 2$ and k for which such a coloring is possible.

Proposed by Horst Sewerin, Germany
Day 3 February 12th
1 Prove that there doesn't exist any positive integer n such that $2 n^{2}+1,3 n^{2}+1$ and $6 n^{2}+1$ are perfect squares.

2 If a, b, c are positive reals such that $a+b+c=1$, prove that

$$
\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c} \leq 2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right) .
$$

3 Let ABC be a triangle and let r, r_{a}, r_{b}, r_{c} denote the inradius and ex-radii opposite to the vertices A, B, C, respectively. Suppose that $a>r_{a}, b>r_{b}, c>r_{c}$. Prove that
(a) $\triangle A B C$ is acute.
(b) $a+b+c>r+r_{a}+r_{b}+r_{c}$.

Day 4 February 15th

1 Let $\tau(n)$ denote the number of positive divisors of the positive integer n. Prove that there exist infinitely many positive integers a such that the equation $\tau(a n)=n$ does not have a positive integer solution n.

2 If a, b, c are three positive real numbers such that $a b+b c+c a=1$, prove that

$$
\sqrt[3]{\frac{1}{a}+6 b}+\sqrt[3]{\frac{1}{b}+6 c}+\sqrt[3]{\frac{1}{c}+6 a} \leq \frac{1}{a b c}
$$

3 For an $n \times n$ matrix A, let X_{i} be the set of entries in row i, and Y_{j} the set of entries in column $j, 1 \leq i, j \leq n$. We say that A is golden if $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ are distinct sets. Find the least integer n such that there exists a 2004×2004 golden matrix with entries in the set $\{1,2, \ldots, n\}$.

Day 5 March 20th

AoPS Community

2005 Germany Team Selection Test

1 Let k be a fixed integer greater than 1 , and let $m=4 k^{2}-5$. Show that there exist positive integers a and b such that the sequence $\left(x_{n}\right)$ defined by

$$
x_{0}=a, \quad x_{1}=b, \quad x_{n+2}=x_{n+1}+x_{n} \quad \text { for } \quad n=0,1,2, \ldots,
$$

has all of its terms relatively prime to m.
Proposed by Jaroslaw Wroblewski, Poland
2 Let O be the circumcenter of an acute-angled triangle $A B C$ with $\angle B<\angle C$. The line $A O$ meets the side $B C$ at D. The circumcenters of the triangles $A B D$ and $A C D$ are E and F, respectively. Extend the sides $B A$ and $C A$ beyond A, and choose on the respective extensions points G and H such that $A G=A C$ and $A H=A B$. Prove that the quadrilateral $E F G H$ is a rectangle if and only if $\angle A C B-\angle A B C=60^{\circ}$.

Proposed by Hojoo Lee, Korea
3 A positive integer is called nice if the sum of its digits in the number system with base 3 is divisible by 3 .

Calculate the sum of the first 2005 nice positive integers.

Day 6 April 24th

1 Find all monotonically increasing or monotonically decreasing functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which satisfy the equation $f(x y) \cdot f\left(\frac{f(y)}{x}\right)=1$ for any two numbers x and y from \mathbb{R}_{+}.

Hereby, \mathbb{R}_{+}is the set of all positive real numbers.
Note. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is called monotonically increasing if for any two positive numbers x and y such that $x \geq y$, we have $f(x) \geq f(y)$.
A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is called monotonically decreasing if for any two positive numbers x and y such that $x \geq y$, we have $f(x) \leq f(y)$.

2 Let $A B C$ be a triangle satisfying $B C<C A$. Let P be an arbitrary point on the side $A B$ (different from A and B), and let the line $C P$ meet the circumcircle of triangle $A B C$ at a point S (apart from the point C).

Let the circumcircle of triangle $A S P$ meet the line $C A$ at a point R (apart from A), and let the circumcircle of triangle $B P S$ meet the line $C B$ at a point Q (apart from B).

Prove that the excircle of triangle $A P R$ at the side $A P$ is identical with the excircle of triangle $P Q B$ at the side $P Q$ if and only if the point S is the midpoint of the arc $A B$ on the circumcircle of triangle $A B C$.
$3 \quad$ Let b and c be any two positive integers. Define an integer sequence a_{n}, for $n \geq 1$, by $a_{1}=1$, $a_{2}=1, a_{3}=b$ and $a_{n+3}=b a_{n+2} a_{n+1}+c a_{n}$.

Find all positive integers r for which there exists a positive integer n such that the number a_{n} is divisible by r.

Day 7 May 7th

1 In the following, a word will mean a finite sequence of letters " a " and " b ". The length of a word will mean the number of the letters of the word. For instance, $a b a a b$ is a word of length 5 . There exists exactly one word of length 0 , namely the empty word.

A word w of length ℓ consisting of the letters $x_{1}, x_{2}, \ldots, x_{\ell}$ in this order is called a palindrome if and only if $x_{j}=x_{\ell+1-j}$ holds for every j such that $1 \leq j \leq \ell$. For instance, baaab is a palindrome; so is the empty word.

For two words w_{1} and w_{2}, let $w_{1} w_{2}$ denote the word formed by writing the word w_{2} directly after the word w_{1}. For instance, if $w_{1}=b a a$ and $w_{2}=b b$, then $w_{1} w_{2}=b a a b b$.

Let r, s, t be nonnegative integers satisfying $r+s=t+2$. Prove that there exist palindromes A, B, C with lengths r, s, t, respectively, such that $A B=C a b$, if and only if the integers $r+2$ and $s-2$ are coprime.

2 Let n be a positive integer, and let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be positive real numbers such that $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$ and $b_{1} \geq a_{1}, b_{1} b_{2} \geq a_{1} a_{2}, b_{1} b_{2} b_{3} \geq a_{1} a_{2} a_{3}, \ldots, b_{1} b_{2} \ldots b_{n} \geq a_{1} a_{2} \ldots a_{n}$.

Prove that $b_{1}+b_{2}+\ldots+b_{n} \geq a_{1}+a_{2}+\ldots+a_{n}$.
$3 \quad$ Let $A B C$ be a triangle with area S, and let P be a point in the plane. Prove that $A P+B P+C P \geq$ $2 \sqrt[4]{3} \sqrt{S}$.

Day 8 May 29th
1 (a) Does there exist a positive integer n such that the decimal representation of n ! ends with the string 2004, followed by a number of digits from the set $\{0 ; 4\}$?
(b) Does there exist a positive integer n such that the decimal representation of n ! starts with the string 2004 ?
$2 \quad$ For any positive integer n, prove that there exists a polynomial P of degree n such that all coeffients of this polynomial P are integers, and such that the numbers $P(0), P(1), P(2), \ldots$, $P(n)$ are pairwisely distinct powers of 2 .

3 Let $A B C$ be a triangle with orthocenter H, incenter I and centroid S, and let d be the diameter of the circumcircle of triangle $A B C$. Prove the inequality

$$
9 \cdot H S^{2}+4(A H \cdot A I+B H \cdot B I+C H \cdot C I) \geq 3 d^{2},
$$

and determine when equality holds.

Day 9 May 30th

1 Find the smallest positive integer n with the following property:
For any integer m with $0<m<2004$, there exists an integer k such that

$$
\frac{m}{2004}<\frac{k}{n}<\frac{m+1}{2005} .
$$

2 Let n be a positive integer such that $n \geq 3$. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be $2 n$ positive real numbers satisfying the equations

$$
a_{1}+a_{2}+\ldots+a_{n}=1, \quad \text { and } \quad b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}=1 .
$$

Prove the inequality

$$
a_{1}\left(b_{1}+a_{2}\right)+a_{2}\left(b_{2}+a_{3}\right)+\ldots+a_{n-1}\left(b_{n-1}+a_{n}\right)+a_{n}\left(b_{n}+a_{1}\right)<1 .
$$

3 Prove that, among 32 integer numbers, one can always find 16 whose sum is divisible by 16.

