AoPS Community

Germany Team Selection Test 2014

www.artofproblemsolving.com/community/c5075
by Kezer, lyukhson

- VAIMO 1

1 In Sikinia we only pay with coins that have a value of either 11 or 12 Kulotnik. In a burglary in one of Sikinia's banks, 11 bandits cracked the safe and could get away with 5940 Kulotnik. They tried to split up the money equally - so that everyone gets the same amount - but it just doesn't worked. After a while their leader claimed that it actually isn't possible.
Prove that they didn't get any coin with the value 12 Kulotnik.
2 Let $A B C D$ be a convex cyclic quadrilateral with $A D=B D$. The diagonals $A C$ and $B D$ intersect in E. Let the incenter of triangle $\triangle B C E$ be I. The circumcircle of triangle $\triangle B I E$ intersects side $A E$ in N.
Prove

$$
A N \cdot N C=C D \cdot B N
$$

3 Let $a_{1} \leq a_{2} \leq \cdots$ be a non-decreasing sequence of positive integers. A positive integer n is called good if there is an index i such that $n=\frac{i}{a_{i}}$. Prove that if 2013 is good, then so is 20 .

- VAIMO 2

1 Let n be an positive integer. Find the smallest integer k with the following property; Given any real numbers a_{1}, \cdots, a_{d} such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leq a_{i} \leq 1$ for $i=1,2, \cdots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1 .
$2 \quad$ Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.
3 In a triangle $A B C$, let D and E be the feet of the angle bisectors of angles A and B, respectively. A rhombus is inscribed into the quadrilateral $A E D B$ (all vertices of the rhombus lie on different sides of $A E D B$). Let φ be the non-obtuse angle of the rhombus. Prove that $\varphi \leq \max \{\angle B A C, \angle A B C\}$.

