

AoPS Community

Mathematical Olympiad Finals 1992

www.artofproblemsolving.com/community/c5077 by Kunihiko_Chikaya

- 1 Let x, y be relatively prime numbers such that $xy \neq 1$. For positive even integer n, prove that x + y isn't a divisor of $x^n + y^n$.
- **2** Suppose that *D*, *E* are points on *AB*, *AC* of $\triangle ABC$ with area 1 respectively and *P* is $BE \cap CD$. When *D*, *E* move on *AB*, *AC* with satisfying the condition $[BCED] = 2\triangle PBC$, find the maximum area of $\triangle PDE$.
- **3** Prove the inequality $\sum_{k=1}^{n-1} \frac{n}{n-k} \cdot \frac{1}{2^{k-1}} < 4 \ (n \ge 2).$
- **4** Let *A* be a $m \times n$ $(m \neq n)$ matrix with the entries 0 and 1. Suppose that if *f* is injective such that $f : \{1, 2, \dots, m\} \longrightarrow \{1, 2, \dots, n\}$, then there exists $1 \leq i \leq m$ such that (i, f(i)) element is 0.

Prove that there exist $S \subseteq \{1, 2, \dots, m\}$ and $T \subseteq \{1, 2, \dots, n\}$ satisfying the condition: *i*) if $i \in S$, $j \in T$, then (i, j) entry is 0. *ii*) card S + card T > n.

5 Suppose that $n \ge 2$ be integer and a_1, a_2, a_3, a_4 satisfy the following condition:

i) $n \text{ and } a_i \ (i = 1, \ 2, \ 3, \ 4)$ are relatively prime.

ii) $(ka_1)_n + (ka_2)_n + (ka_3)_n + (ka_4)_n = 2n$ for $k = 1, 2, \dots, n-1$.

Note that $(a)_n$ expresses the divisor when a is divided by n.

Prove that $(a_1)_n$, $(a_2)_n$, $(a_3)_n$, $(a_4)_n$ can be divided into two pair with sum *n*.

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🍪

Art of Problem Solving is an ACS WASC Accredited School.