AoPS Community

Mathematical Olympiad Finals 1994

www.artofproblemsolving.com/community/c5079
by WakeUp, fourierseries

1 For any positive integer n, let a_{n} denote the closest integer to \sqrt{n}, and let $b_{n}=n+a_{n}$. Determine the increasing sequence $\left(c_{n}\right)$ of positive integers which do not occur in the sequence $\left(b_{n}\right)$.

2 Five points, no three collinear, are given on the plane. Let $l_{1}, l_{2}, \ldots, l_{10}$ be the lengths of the ten segments joining any two of the given points. Prove that if $l_{1}^{2}, \ldots, l_{9}^{2}$ are rational numbers, then l_{10}^{2} is also a rational number.

3 Let P_{0} be a point in the plane of triangle $A_{0} A_{1} A_{2}$. Define $P_{i}(i=1, \ldots, 6)$ inductively as the point symmetric to P_{i-1} with respect to A_{k}, where k is the remainder when i is divided by 3 .
a) Prove that $P_{6} \equiv P_{1}$.
b) Find the locus of points P_{0} for which $P_{i} P_{i+1}$ does not meet the interior of $\triangle A_{0} A_{1} A_{2}$ for $0 \leq i \leq 5$.

4 In a triangle $A B C, M$ is the midpoint of $B C$. Given that $\angle M A C=15^{\circ}$, find the maximum possible value of $\angle A B C$.
$5 \quad$ In a deck of N cards, the cards are denoted by 1 to N. These cards are dealt to N people twice. A person X wins a prize if there is no person Y who got a card with a smaller number than X both times. Determine the expected number of prize winners.

