AoPS Community

Mathematical Olympiad Finals 1995

www.artofproblemsolving.com/community/c5080
by Kunihiko_Chikaya, $\{x\}$

- February 11th

1 Let $n \geq 2$ be integers and r be positive integers such that r is not the multiple of n, and let g be the greatest common measure of n and r. Prove that

$$
\sum_{i=1}^{n-1}\left\{\frac{r i}{n}\right\}=\frac{1}{2}(n-g)
$$

where $\{x\}$ is the fractional part, that is to say, which means the value by subtracting x from the maximum integer value which is equal or less than x.

2 Find all the non-constant rational function of $f(x)$ and real numbers a satisfying $\{f(x)\}^{2}-a=$ $f\left(x^{2}\right)$.
Here a rational function of x is the equation expressed by the ratio of two polynominals of x.
3 Given a convex pentagon $A B C D E$. Let S, R be the intersection points of $A C$ or $A D$ and $B E$ respectively, and let the intersection points T, P of $C A$ or $C E$ and $B D$ respectively.Let Q be the intersection point of $C E$ and $A D$. If all of $\triangle A S R, \triangle B T S, \triangle C P T, \triangle D Q P$, and $\triangle E R Q$ have the area of 1 , then find the area of the following pentagons.
(1) The pentagon $P Q R S T$.
(2) The pentagon $A B C D E$.

4 The sequence $\left\{a_{1}, a_{2}, \cdots\right\}$ is defined by $a_{2 n}=a_{n}, a_{2 n+1}=(-1)^{n}$. A point P moves on the coordinate plane as follows.
(1) Let P_{0} be the origin, P moves in a distance of 1 from P_{0} toward in the positive direction of x-axis, Denote this point by P_{i}.
(2) After P has moved to P_{i}, it turns 90° to the left and moves in a distance of 1 when $a_{i}=1$, and turns 90° to the right and moves in a distance of 1 when $a_{i}=-1$. Denote this point by P_{i+1}, where $i=1,2, \cdots$. Prove that P can't pass on the same segment more than two times.

5 Let k, n be integers such that $1 \leq k \leq n$, and let $a_{1}, a_{2}, \cdots, a_{k}$ be numbers satisfying the following equations.

$$
\left\{\begin{array}{c}
a_{1}+\cdots \cdots+a_{k}=n \\
a_{1}^{2}+\cdots \cdots+a_{k}^{2}=n \\
\vdots \\
a_{1}^{k}+\cdots \cdots+a_{k}^{k}=n
\end{array}\right.
$$

Prove that

$$
\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{k}\right)=x^{k}+{ }_{n} C_{1} x^{k-1}+{ }_{n} C_{2} x^{k-2}+\cdots+{ }_{n} C_{k} .
$$

where ${ }_{i} C_{j}$ is a binomial coefficient which means $\frac{i \cdot(i-1) \cdots(i-j+1)}{j \cdot(j-1) \cdots 2 \cdot 1}$.

