

AoPS Community

Mathematical Olympiad Finals 1995

www.artofproblemsolving.com/community/c5080 by Kunihiko_Chikaya, {x}

1 Let $n \ge 2$ be integers and r be positive integers such that r is not the multiple of n, and let g be the greatest common measure of n and r. Prove that

$$\sum_{i=1}^{n-1} \left\{ \frac{ri}{n} \right\} = \frac{1}{2}(n-g).$$

where $\{x\}$ is the fractional part, that is to say, which means the value by subtracting x from the maximum integer value which is equal or less than x.

2 Find all the non-constant rational function of f(x) and real numbers a satisfying $\{f(x)\}^2 - a = f(x^2)$.

Here a rational function of x is the equation expressed by the ratio of two polynomials of x.

3 Given a convex pentagon *ABCDE*. Let *S*, *R* be the intersection points of *AC* or *AD* and *BE* respectively, and let the intersection points *T*, *P* of *CA* or *CE* and *BD* respectively.Let *Q* be the intersection point of *CE* and *AD*. If all of $\triangle ASR$, $\triangle BTS$, $\triangle CPT$, $\triangle DQP$, and $\triangle ERQ$ have the area of 1, then find the area of the following pentagons.

(1) The pentagon *PQRST*.
(2) The pentagon *ABCDE*.

4 The sequence $\{a_1, a_2, \dots\}$ is defined by $a_{2n} = a_n$, $a_{2n+1} = (-1)^n$. A point *P* moves on the coordinate plane as follows.

(1) Let P_0 be the origin, P moves in a distance of 1 from P_0 toward in the positive direction of *x*-axis, Denote this point by P_i .

(2) After *P* has moved to P_i , it turns 90° to the left and moves in a distance of 1 when $a_i = 1$, and turns 90° to the right and moves in a distance of 1 when $a_i = -1$. Denote this point by P_{i+1} , where $i = 1, 2, \cdots$. Prove that *P* can't pass on the same segment more than two times.

5 Let k, n be integers such that $1 \le k \le n$, and let a_1, a_2, \dots, a_k be numbers satisfying the following equations.

$$\begin{cases} a_1 + \dots + a_k = n \\ a_1^2 + \dots + a_k^2 = n \\ \vdots \\ a_1^k + \dots + a_k^k = n \end{cases}$$

Prove that

$$(x+a_1)(x+a_2)\cdots(x+a_k) = x^k + {}_nC_1 x^{k-1} + {}_nC_2 x^{k-2} + \cdots + {}_nC_k$$

where $_iC_j$ is a binomial coefficient which means $\frac{i \cdot (i-1) \cdots (i-j+1)}{j \cdot (j-1) \cdots 2 \cdot 1}$.

Act of Problem Solving is an ACS WASC Accredited School.