AoPS Community

Mathematical Olympiad Finals 1996

www.artofproblemsolving.com/community/c5081
by WakeUp

1 A plane is partitioned into triangles. Let \mathcal{T}_{0} denote the set of vertices of triangles in the partition. Let $A B C$ be a triangle with $A, B, C \in \mathcal{T}_{0}$ and θ be its smallest angle. Assume that no point of \mathcal{T}_{0} lies inside the circumcircle of $\triangle A B C$. Prove that there exists a triangle σ in the partition such that its intersection with $\triangle A B C$ is nonempty and whose every angle is greater than θ.

2 Let m, n be positive integers with $(m, n)=1$. Find $\left(5^{m}+7^{m}, 5^{n}+7^{n}\right)$.
$3 \quad$ Let $x>1$ be a real number which is not an integer. For each $n \in \mathbb{N}$, let $a_{n}=\left\lfloor x^{n+1}\right\rfloor-x\left\lfloor x^{n}\right\rfloor$. Prove that the sequence $\left(a_{n}\right)$ is not periodic.

4 Let θ be the maximum of the six angles between six edges of a regular tetrahedron in space and a fixed plane. When the tetrahedron is rotated in space, find the maximum of θ.

5 Let q be a real number with $\frac{1+\sqrt{5}}{2}<q<2$. If a positive integer n is represented in binary system as $2^{k}+a_{k-1} 2^{k-1}+\cdots+2 a_{1}+a_{0}$, where $a_{i} \in\{0,1\}$, define

$$
p_{n}=q^{k}+a_{k-1} q^{k-1}+\cdots+q a_{1}+a_{0} .
$$

Prove that there exist infinitely many positive integers k with the property that there is no $l \in \mathbb{N}$ such that $p_{2 k}<p_{l}<p_{2 k+1}$.

