AoPS Community

Mathematical Olympiad Finals 1997

www.artofproblemsolving.com/community/c5082
by Kunihiko_Chikaya, hxtung

1 Take 10 points inside the circle with diameter 5. Prove that for any these 10 points there exist two points whose distance is less than 2.

2 Prove that
$\frac{(b+c-a)^{2}}{(b+c)^{2}+a^{2}}+\frac{(c+a-b)^{2}}{(c+a)^{2}+b^{2}}+\frac{(a+b-c)^{2}}{(a+b)^{2}+c^{2}} \geq \frac{3}{5}$
for any positive real numbers a, b, c.
3 Call the Graph the set which composed of several vertices $P_{1}, \cdots P_{2}$ and several edges (segments) connecting two points among these vertices. Now let G be a graph with 9 vertices and satisfies the following condition.

Condition: Even if we select any five points from the vertices in G, there exist at least two edges whose endpoints are included in the set of 5 points.
What is the minimum possible numbers of edges satisfying the condition?
4 Let A, B, C, D be points in space which are not on a same plane and no any 3 points are not colinear.
Suppose that the sum of the segments $A X+B X+C X+D X$ is minimized at $X=X_{0}$ which is different from A, B, C, D. Prove that $\angle A X_{0} B=\angle C X_{0} D$.
$5 \quad$ The letters A or B are assigned on the points divided equally into $2^{n}(n=1,2, \cdots)$ parts of a circumference. If you choose n letters from any succesively arranging points directed clockwise, prove that there exists the way of assignning for which the line of letters are mutually distinct.

