AoPS Community

Mathematical Olympiad Finals 1998

www.artofproblemsolving.com/community/c5083
by Kouichi Nakagawa

1 Let $p \geq 3$ be a prime, and let p points A_{0}, \ldots, A_{p-1} lie on a circle in that order. Above the point $A_{1+\cdots+k-1}$ we write the number k for $k=1, \ldots, p$ (so 1 is written above A_{0}). How many points have at least one number written above them?

2 A country has 1998 airports connected by some direct flights. For any three airports, some two are not connected by a direct flight. What is the maximum number of direct flights that can be offered?

3 Let $P_{1}, \ldots P_{n}$ be the sequence of vertices of a closed polygons whose sides may properly intersect each other at points other than the vertices. The external angle at P_{i} is defined as 180° minus the angle of rotation about P_{i} required to bring the ray $P_{i} P_{i-1}$ onto the ray $P_{i} P_{i+1}$, taken in the range $\left(0^{\circ}, 360^{\circ}\right)$. (Here $P_{0}=P_{n}$ and $\left.P_{1}=P_{n+1}\right)$. Prove that if the sum of the external angles is a multiple of 720°, then the number of self-intersections is odd.

4 Let $c_{n, m}$ be the number of permutations of $\{1, \ldots, n\}$ which can be written as the product of m transpositions of the form $(i, i+1)$ for some $i=1, \ldots, n-1$ but not of $m-1$ suct transpositions. Prove that for all $n \in \mathbb{N}$,

$$
\sum_{m=0}^{\infty} c_{n, m} t^{m}=\prod_{i=1}^{n}\left(1+t+\cdots+t^{i-1}\right)
$$

5 On each of 12 points around a circle we place a disk with one white side and one black side. We may perform the following move: select a black disk, and reverse its two neighbors. Find all initial configurations from which some sequence of such moves leads to the position where all disks but one are white.

