Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2000

www.artofproblemsolving.com/community/c5085
by WakeUp, namanhams

1 Consider the points $O(0,0)$ and $A(0,1 / 2)$ on the coordinate plane. Prove that there is no finite sequence of rational points $P_{1}, P_{2}, \ldots, P_{n}$ in the plane such that

$$
O P_{1}=P_{1} P_{2}=\ldots=P_{n-1} P_{n}=P_{n} A=1
$$

2 Let $3 n$ cards, denoted by distinct letters $a_{1}, a_{2}, \ldots, a_{3 n}$, be put in line in this order from left to right. After each shuffle, the sequence $a_{1}, a_{2}, \ldots, a_{3 n}$ is replaced by the sequence $a_{3}, a_{6}, \ldots, a_{3 n}, a_{2}, a_{5}, \ldots$, Is it possible to replace the sequence of cards $1,2, \ldots, 192$ by the reverse sequence $192,191, \ldots, 1$ by a finite number of shuffles?

3 Given five points A, B, C, D, E in a plane, no three of which are collinear, prove the inequality

$$
A B+B C+C A+D E \leq A D+A E+B D+B E+C D+C E
$$

4 Given a natural number $n \geq 3$, prove that there exists a set A_{n} with the following two properties:

1) A_{n} consists of n distinct natural numbers
2) For any $a \in A$, the remainder of the product of all elements of $A_{n} \backslash\{a\}$ divided by a is 1 .
$5 \quad$ Finitely many lines are given in a plane. We call an intersection point a point that belongs to at least two of the given lines, and a good intersection point a point that belongs to exactly two lines. Assuming there at least two intersection points, find the minimum number of good intersection points.
