Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2002

www.artofproblemsolving.com/community/c5087
by mr.danh, Kunihiko_Chikaya

1 Distinct points A, M, B with $A M=M B$ are given on circle $\left(C_{0}\right)$ in this order. Let P be a point on the arc $A B$ not containing M. Circle $\left(C_{1}\right)$ is internally tangent to $\left(C_{0}\right)$ at P and tangent to $A B$ at Q. Prove that the product $M P \cdot M Q$ is independent of the position of P.

2 There are $n \geq 3$ coins on a circle. Consider a coin and the two coins adjacent to it; if there are an odd number of heads among the three, we call it good. An operation consists of turning over all good coins simultaneously. Initially, exactly one of the n coins is a head. The operation is repeatedly performed.
(a) Prove that if n is odd, the coins will never be all-tails.
(b) For which values of n is it possible to make the coins all-tails after several operations? Find, in terms of n, the number of operations needed for this to occur.

3 Denote by $S(n)$ the sum of decimal digits of a positive integer n. Show that there exist 2002 distinct positive integers $n_{1}, n_{2}, \cdots, n_{2002}$ such that $n_{1}+S\left(n_{1}\right)=n_{2}+S\left(n_{2}\right)=\cdots=n_{2002}+$ $S\left(n_{2002}\right)$.

4 Let $n \geq 3$ be natural numbers, and let $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}$ be positive numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1, b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}=1$. Prove that $a_{1}\left(b_{1}+a_{2}\right)+a_{2}\left(b_{2}+a_{3}\right)+\cdots+$ $a_{n}\left(b_{n}+a_{1}\right)<1$.

5 Let S be a set of 2002 points in the coordinate plane, no two of which have the same $x-$ or y-coordinate. For any two points $P, Q \in S$, consider the rectangle with one diagonal $P Q$ and the sides parallel to the axes. Denote by $W_{P Q}$ the number of points of S lying in the interior of this rectangle. Determine the maximum N such that, no matter how the points of S are distributed, there always exist points P, Q in S with $W_{P Q} \geq N$.

