AoPS Community

Mathematical Olympiad Finals 2003

www.artofproblemsolving.com/community/c5088
by dragonfire

1 A point P lies in $\triangle A B C$. The lines $B P, C P$ meet $A C, A B$ at Q, R respectively. Given that $A R=$ $R B=C P, C Q=P Q$, find $\angle B R C$.

2 We have two distinct positive integers a, b with $a \mid b$. Each of a, b consists of $2 n$ decimal digits. The first n digits of a are identical to the last n digits of b, and vice versa. Determine a, b.

3 Find the greatest real number k such that, for any positive a, b, c with $a^{2}>b c$, $\left(a^{2}-b c\right)^{2}>$ $k\left(b^{2}-c a\right)\left(c^{2}-a b\right)$.

4 Let $p, q \geq 2$ be coprime integers. A list of integers $\left(r, a_{1}, a_{2}, \ldots, a_{n}\right)$ with $\left|a_{i}\right| \geq 2$ for all i is said to be an expansion of p / q if $\frac{p}{q}=r+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}}}}}$.
Now define the weight of an expansion $\left(r, a_{1}, a_{2}, \ldots, a_{n}\right)$ to be the product $\left(\left|a_{1}\right|-1\right)\left(\left|a_{2}\right|-\right.$ 1)... $\left(\left|a_{n}\right|-1\right)$.

Show that the sum of the weights of all expansions of p / q is q.
5 Find the greatest possible integer n such that one can place n points in a plane with no three on a line, and color each of them either red, green, or yellow so that:
(i) inside each triangle with all vertices red there is a green point.
(ii) inside each triangle with all vertices green there is a yellow point.
(iii) inside each triangle with all vertices yellow there is a red point.

