AoPS Community

Mathematical Olympiad Finals 2004

www.artofproblemsolving.com/community/c5089
by CrazyInMath, Kunihiko_Chikaya

1 Show that there is no positive integer n such that $2 n^{2}-1,3 n^{2}-1,6 n^{2}-1$ are all perfect squares.

2 Find all functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f(x f(x)+f(y))=(f(x))^{2}+y$ for all $x, y \in \mathbb{R}$.
3 Given two planes π_{1}, π_{2} intersecting orthogonally in space. Let A, B be two distinct points on the line of intersection of π_{1} and π_{2}, and C be the point which is on π_{2} but not on π_{1}. Denote by P the intersection point of the bisector of $\angle B C A$ and $A B$, and denote S by the circumference on π_{1} with a diameter $A B$. For an arbiterary plane π_{3} which contains $C P$, if D, E are the intersection points of π_{3} and S, then prove that $C P$ is the bisector of $\angle D C E$.

4 For positive real numbers a, b, c satisfying $a+b+c=1$,
Prove that we have $\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c} \leqq 2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)$. Note that you don't need to state for the condition for which the equality holds.

5 In a land any towns are connected by roads with exactly other three towns. Last year we made a trip starting from a town coming back to the town by visiting exactly one time all towns in land. This year we are plan to make a trip in the same way as last year's trip. Note that you can't take such order completely same as last year's one or trace the order only reversely. Prove that this is possible.

