Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2005

www.artofproblemsolving.com/community/c5090
by Kunihiko_Chikaya, Leva1980

1 Double-faced coins are arranged with all the heads facing upward in the shape of 17×17.At one operation, you turn over 5 consecutive coins in longitudinal or 5 ones in transversal or 5 ones in oblique at the same time. Now can you make all those reverses face upward when you repeat this operation?

2 Let $P(x, y), Q(x, y)$ be two-variable polynomials with the coefficients of integer.Supposed that when a_{n}, b_{n} are determined for certain integers a_{0}, b_{0} by $a_{n+1}=P\left(a_{n}, b_{n}\right), b_{n+1}=Q\left(a_{n}, b_{n}\right)(n=$ $0,1,2, \cdots)$ there existed positive integer k such that $\left(a_{1}, b_{1}\right) \neq\left(a_{0}, b_{0}\right)$ and $\left(a_{k}, b_{k}\right)=\left(a_{0}, b_{0}\right)$.Prove that the number of the lattice points on the segment with end points of $\left(a_{n}, b_{n}\right)$ and (a_{n+1}, b_{n+1}) is indepedent of n.

3 Let a, b, c be positive real numbers such that $a+b+c=1$.Prove the following inequality.

$$
a \sqrt[3]{1+b-c}+b \sqrt[3]{1+c-a}+c \sqrt[3]{1+a-b} \leqq 1
$$

$4 \quad$ Given two points A and B on a circle Γ. Let the tangents to this circle Γ at the points A and B meet at a point X. Let C and D be two points on the circle Γ such that the points C, D, X are collinear in this order and such that the lines $C A$ and $B D$ are perpendicular.

Let the line $C A$ intersect the line $B D$ at a point F.
Let the line $C D$ intersect the line $A B$ at a point G.
Let H be the point of intersection of the segment $B D$ and the perpendicular bisector of the segment $G X$.

Prove that the four points X, F, G, H lie on one circle.
5 You are the boss. You have ten men and there are ten tasks. Your men have two parameters to each task, one is enthusiasm, the other is ability. Now you are to assign the tasks to your men one by one. When man A has more enthusiasm about task v than about task u, and man A has better ability in task v than man B does, though if you assign task u to man A and task v to man B, man A feel unsatisfied.Or, if there is a more efficient way than yours that you can assign each task to men with better ability, you will be brought to account by your employer.Prove that there is a way to assign tasks without any dissatisfaction or disadvantage.

