Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2006
www.artofproblemsolving.com/community/c5091
by Kunihiko_Chikaya

- February 11th

1 Given five distinct points A, M, B, C, D in this order on the circumference of the circle O such that $M A=M B$.
Let P, Q be the intersection points of the line $A C$ and $M D$, and that of the line $B D$ and $M C$, respectively.
If two intersection points of the line $P Q$ and the circumference of the circle O are X, Y, then prove that $M X=M Y$.

2 Determine all integers k for which there exist infinitely the pairs of integers (a, b, c) satisfying the following equation.

$$
\left(a^{2}-k\right)\left(b^{2}-k\right)=c^{2}-k
$$

3 Find all functions f, defined on real numbers and taking real values such that $\{f(x)\}^{2}+2 y f(x)+$ $f(y)=f(y+f(x))$ for all real numbers x, y.

4 Let m, n be integers such that $2 \leq m \leq n$ and let a, a^{\prime} be integers which are less than or equal to m and let b, b^{\prime} be integers which are less than or equal to n such that $(a, b) \neq\left(a^{\prime} b^{\prime}\right)$. Given a town of the rectangular shaped chessboard which is made up of $m^{\prime} s$ road running north and south which is called Line and $n^{\prime} s$ road running west and east which is called Street. Denote the intersection point of the a th Line from the west and b th Street from the north by A, and a^{\prime} th Line from the west and b^{\prime} th Street from the north by B, including the edge for both cases.Find all pair of ($m, n, a, b, a^{\prime}, b^{\prime}$) such that by passing through each crossroads of the town exactly one time, you can reach the point B from the point A including in the start point and goal one.

5 For any positive real numbers $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}$, find the maximum value of real number A such that if

$$
M=\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+1\right)\left(y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+1\right)\left(z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+1\right)
$$

and

$$
N=A\left(x_{1}+y_{1}+z_{1}\right)\left(x_{2}+y_{2}+z_{2}\right)\left(x_{3}+y_{3}+z_{3}\right),
$$

then $M \geq N$ always holds, then find the condition that the equality holds.

