Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2008

www.artofproblemsolving.com/community/c5093
by Kunihiko_Chikaya

- February 11th

1 Let $P(x)$ be a polynomial with integer coefficients such that $P\left(n^{2}\right)=0$ for some non zero integers n. Prove that $P\left(a^{2}\right) \neq 1$ for all non zero rational numbers $a \neq 0$.

2 There are 2008 red cards and 2008 white cards. 2008 players sit down in circular toward the inside of the circle in situation that 2 red cards and 2 white cards from each card are delivered to each person. Each person conducts the following procedure in one turn as follows.
$(*)$ If you have more than one red card, then you will pass one red card to the left-neighbouring player.

If you have no red card, then you will pass one white card to the left -neighbouring player. Find the maximum value of the number of turn required for the state such that all person will have one red card and one white card first.

3 Given an acute-angled triangle $A B C$ with circumcenter O. The circle passing through two points A, O intersects with the line $A B$ and $A C$ at P, Q other than A respectively. If the lengths of the line segments $P Q, B C$ are equal, then find the angle $\leq 90^{\circ}$ that the lines $P Q$ and $B C$ make.
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y) f(f(x)-y)=x f(x)-y f(y)
$$

for all $x, y \in \mathbb{R}$.
$5 \quad$ Can it be existed postive integers n such that there are integers b and non zero integers $a_{i}(i=$ $1,2, \cdots n)$ for rational numbers r which satisfies $r=b+\sum_{i=1}^{n} \frac{1}{a_{i}}$?

