

Mathematical Olympiad Finals 2008

www.artofproblemsolving.com/community/c5093

AoPS Community

by Kunil	niko_Chikaya
-	February 11th
1	Let $P(x)$ be a polynomial with integer coefficients such that $P(n^2) = 0$ for some non zero integers n . Prove that $P(a^2) \neq 1$ for all non zero rational numbers $a \neq 0$.
2	There are 2008 red cards and 2008 white cards. 2008 players sit down in circular toward the inside of the circle in situation that 2 red cards and 2 white cards from each card are delivered to each person. Each person conducts the following procedure in one turn as follows. (*) If you have more than one red card, then you will pass one red card to the left-neighbouring player.
	If you have no red card, then you will pass one white card to the left -neighbouring player. Find the maximum value of the number of turn required for the state such that all person will have one red card and one white card first.
3	Given an acute-angled triangle <i>ABC</i> with circumcenter <i>O</i> . The circle passing through two points <i>A</i> , <i>O</i> intersects with the line <i>AB</i> and <i>AC</i> at <i>P</i> , <i>Q</i> other than <i>A</i> respectively. If the lengths of the line segments <i>PQ</i> , <i>BC</i> are equal, then find the angle $\leq 90^{\circ}$ that the lines <i>PQ</i> and <i>BC</i> make.
4	Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
	f(x+y)f(f(x)-y) = xf(x) - yf(y)
	for all $x, y \in \mathbb{R}$.
5	Can it be existed postive integers n such that there are integers b and non zero integers a_i $(i = 1, 2, \dots, n)$ for rational numbers r which satisfies $r = b + \sum_{i=1}^{n} \frac{1}{a_i}$?

Art of Problem Solving is an ACS WASC Accredited School.

🐼 AoPS Online 🐼 AoPS Academy 🔯 AoPS 🕬