AoPS Community

Mathematical Olympiad Finals 2009

www.artofproblemsolving.com/community/c5094
by Kunihiko_Chikaya
$1 \quad$ Find all positive integers n such that $8^{n}+n$ is divisible by $2^{n}+n$.
2 Let N be postive integer. Some integers are written in a black board and those satisfy the following conditions.

1. Any numbers written are integers which are from 1 to N.
2. More than one integer which is from 1 to N is written.
3. The sum of numbers written is even.

If we mark X to some numbers written and mark Y to all remaining numbers, then prove that we can set the sum of numbers marked X are equal to that of numbers marked Y.

3 Let $k \geq 2$ be integer, n_{1}, n_{2}, n_{3} be positive integers and a_{1}, a_{2}, a_{3} be integers from $1,2, \cdots, k-$ 1.

Let $b_{i}=a_{i} \sum_{j=0}^{n_{i}} k^{j}(i=1,2,3)$. Find all possible pairs of integers $\left(n_{1}, n_{2}, n_{3}\right)$ such that $b_{1} b_{2}=b_{3}$.

4 Let Γ be a circumcircle. A circle with center O touches to line segment $B C$ at P and touches the $\operatorname{arc} B C$ of Γ which doesn't have A at Q. If $\angle B A O=\angle C A O$, then prove that $\angle P A O=\angle Q A O$.

5 Find all functions f, defined on the non negative real numbers and taking non negative real numbers such that $f\left(x^{2}\right)+f(y)=f\left(x^{2}+y+x f(4 y)\right)$ for any non negative real numbers x, y.

