

AoPS Community

Mathematical Olympiad Finals 2009

www.artofproblemsolving.com/community/c5094 by Kunihiko_Chikaya

1	Find all positive integers n such that $8^n + n$ is divisible by $2^n + n$.
2	Let N be postive integer. Some integers are written in a black board and those satisfy the following conditions.
	1. Any numbers written are integers which are from 1 to N .
	2. More than one integer which is from 1 to N is written.
	3. The sum of numbers written is even.
	If we mark X to some numbers written and mark Y to all remaining numbers, then prove that we can set the sum of numbers marked X are equal to that of numbers marked Y.
3	Let $k \ge 2$ be integer, n_1, n_2, n_3 be positive integers and a_1, a_2, a_3 be integers from $1, 2, \dots, k-1$
	Let $b_i = a_i \sum_{j=0}^{n_i} k^j$ $(i = 1, 2, 3)$. Find all possible pairs of integers (n_1, n_2, n_3) such that $b_1b_2 = b_3$.
4	Let Γ be a circumcircle. A circle with center O touches to line segment BC at P and touches the arc BC of Γ which doesn't have A at Q . If $\angle BAO = \angle CAO$, then prove that $\angle PAO = \angle QAO$.
5	Find all functions f , defined on the non negative real numbers and taking non negative real numbers such that $f(x^2) + f(y) = f(x^2 + y + xf(4y))$ for any non negative real numbers x, y .