Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2010

www.artofproblemsolving.com/community/c5095
by Kunihiko_Chikaya

- \quad February 11th

1 Given an acute-angled triangle $A B C$ such that $A B \neq A C$. Draw the perpendicular $A H$ from A to $B C$. Suppose that if we take points P, Q in such a way that three points A, B, P and three points A, C, Q are collinear in this order respectively, then we have four points B, C, P, Q are concyclic and $H P=H Q$. Prove that H is the circumcenter of $\triangle A P Q$.

2 Let k be positive integer and m be odd number. Prove that there exists positive integer n such that $n^{n}-m$ is divisible by 2^{k}.

3 There are 2010 islands and 2009 bridges connecting them. Suppose that any bridges are connected by one bridge or not the endpoints are connected to 2 distinct islands and we can travel a few times by crossing bridges from each island to any other islands.
Now a letter from each island was sent to some island, note that, some letter may sent to same island, then the following fact was proved that:
In case of connecting island A and island B by bridge, the habitant of island A and that of island B are mutually connected by bridge or the same island (itself).
Prove that at least one of the following statements (1) or (2) hold.
(1) There exists island for which a letter was sent to the same island.
(2) There exist 2 islands, connecting bridge, whose letter are exchanged each other.

4 Let x, y, z be positive real numbers.
Prove that

$$
\frac{1+y z+z x}{(1+x+y)^{2}}+\frac{1+z x+x y}{(1+y+z)^{2}}+\frac{1+x y+y z}{(1+z+x)^{2}} \geq 1
$$

5 Given a convex 2010 polygonal whose any 3 diagonals have no intersection points except vertices. Consider closed broken lines which have 2010 diagonals (not including edges) and they pass through each vertex exactly one time. Find the possible maximum value of the number of self-crossing. Note that we call closed broken lines such that broken line $P_{1} P_{2} \cdots P_{n} P_{n+1}$ has the property $P_{1}=P_{n+1}$.

