Art of Problem Solving

AoPS Community

Mathematical Olympiad Finals 2013

www.artofproblemsolving.com/community/c5098
by Kunihiko_Chikaya

- \quad February 11th

1 Let n, k be positive integers with $n \geq k$. There are n persons, each person belongs to exactly one of group 1, group $2, \cdots$, group k and more than or equal to one person belong to any groups. Show that n^{2} sweets can be delivered to n persons in such way that all of the following condition are satisfied.

- At least one sweet are delivered to each person.
- a_{i} sweet are delivered to each person belonging to group $i(1 \leq i \leq k)$.
- If $1 \leq i<j \leq k$, then $a_{i}>a_{j}$.

2 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{R}$ such that the equality

$$
f(m)+f(n)=f(m n)+f(m+n+m n)
$$

holds for all $m, n \in \mathbb{Z}$.
3 Let $n \geq 2$ be a positive integer. Find the minimum value of positive integer m for which there exist positive integers $a_{1}, a_{2}, \cdots, a_{n}$ such that :

- $a_{1}<a_{2}<\cdots<a_{n}=m$
- $\frac{a_{1}^{2}+a_{2}^{2}}{2}, \frac{a_{2}^{2}+a_{3}^{2}}{2}, \cdots, \frac{a_{n-1}^{2}+a_{n}^{2}}{2}$ are all square numbers.

4 Given an acute-angled triangle ABC , let H be the orthocenter. A cirlcle passing through the points B, C and a cirlcle with a diameter $A H$ intersect at two distinct points X, Y. Let D be the foot of the perpendicular drawn from A to line $B C$, and let K be the foot of the perpendicular drawn from D to line $X Y$. Show that $\angle B K D=\angle C K D$.
$5 \quad$ Let n be a positive integer. Given are points $P_{1}, P_{2}, \cdots, P_{4 n}$ of which any three points are not collinear. For $i=1,2, \cdots, 4 n$, rotating half-line $P_{i} P_{i-1}$ clockwise in 90° about the pivot P_{i} gives half-line $P_{i} P_{i+1}$. Find the maximum value of the number of the pairs of (i, j) such that line segments $P_{i} P_{i+1}$ and $P_{j} P_{j+1}$ intersect at except endpoints.
Note that : $P_{0}=P_{4 n}, P_{4 n+1}=P_{1}$ and $1 \leq i<j \leq 4 n$.

