

AoPS Community

Mathematical Olympiad Finals 2013

www.artofproblemsolving.com/community/c5098 by Kunihiko_Chikaya

- February 11th
- 1 Let n, k be positive integers with $n \ge k$. There are n persons, each person belongs to exactly one of group 1, group 2, \cdots , group k and more than or equal to one person belong to any groups. Show that n^2 sweets can be delivered to n persons in such way that all of the following condition are satisfied.
 - At least one sweet are delivered to each person.
 - a_i sweet are delivered to each person belonging to group $i \ (1 \le i \le k)$.
 - If $1 \le i < j \le k$, then $a_i > a_j$.
- **2** Find all functions $f : \mathbb{Z} \to \mathbb{R}$ such that the equality

$$f(m) + f(n) = f(mn) + f(m+n+mn)$$

holds for all $m, n \in \mathbb{Z}$.

- **3** Let $n \ge 2$ be a positive integer. Find the minimum value of positive integer m for which there exist positive integers a_1, a_2, \dots, a_n such that :
 - $a_1 < a_2 < \cdots < a_n = m$
 - $\frac{a_1^2+a_2^2}{2}$, $\frac{a_2^2+a_3^2}{2}$, ..., $\frac{a_{n-1}^2+a_n^2}{2}$ are all square numbers.
- **4** Given an acute-angled triangle ABC, let *H* be the orthocenter. A cirlcle passing through the points *B*, *C* and a cirlcle with a diameter *AH* intersect at two distinct points *X*, *Y*. Let *D* be the foot of the perpendicular drawn from *A* to line *BC*, and let *K* be the foot of the perpendicular drawn from *D* to line *XY*. Show that $\angle BKD = \angle CKD$.
- **5** Let *n* be a positive integer. Given are points P_1, P_2, \dots, P_{4n} of which any three points are not collinear. For $i = 1, 2, \dots, 4n$, rotating half-line P_iP_{i-1} clockwise in 90° about the pivot P_i gives half-line P_iP_{i+1} . Find the maximum value of the number of the pairs of (i, j) such that line segments P_iP_{i+1} and P_jP_{j+1} intersect at except endpoints. Note that : $P_0 = P_{4n}, P_{4n+1} = P_1$ and $1 \le i < j \le 4n$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱