AoPS Community

Mathematical Olympiad Finals 2014

www.artofproblemsolving.com/community/c5099
by syk0526, Kunihiko_Chikaya

- \quad February 11th

1 Let O be the circumcenter of triangle $A B C$, and let l be the line passing through the midpoint of segment $B C$ which is also perpendicular to the bisector of angle $\angle B A C$. Suppose that the midpoint of segment $A O$ lies on l. Find $\angle B A C$.

2 Find all ordered triplets of positive integers (a, b, c) such that $2^{a}+3^{b}+1=6^{c}$.
3 In a school, there are n students and some of them are friends each other. (Friendship is mutual.) Define a, b the minimum value which satisfies the following conditions:
(1) We can divide students into a teams such that two students in the same team are always friends.
(2) We can divide students into b teams such that two students in the same team are never friends.
Find the maximum value of $N=a+b$ in terms of n.
4 Let Γ be the circumcircle of triangle $A B C$, and let l be the tangent line of Γ passing A. Let D, E be the points each on side $A B, A C$ such that $B D: D A=A E: E C$. Line $D E$ meets Γ at points F, G. The line parallel to $A C$ passing D meets l at H, the line parallel to $A B$ passing E meets l at I. Prove that there exists a circle passing four points F, G, H, I and tangent to line $B C$.

5 Find the maximum value of real number k such that

$$
\frac{a}{1+9 b c+k(b-c)^{2}}+\frac{b}{1+9 c a+k(c-a)^{2}}+\frac{c}{1+9 a b+k(a-b)^{2}} \geq \frac{1}{2}
$$

holds for all non-negative real numbers a, b, c satisfying $a+b+c=1$.

