

AoPS Community

Dutch Mathematical Olympiad 1998

www.artofproblemsolving.com/community/c5100 by Arne, Andreas

1 Consider any permutation σ of $\{0, 1, 2, ..., 9\}$ and for each of the 8 triples of consecutive numbers in this permutation, consider the sum of these three numbers. Let $M(\sigma)$ be the largest of these 8 sums. (For example, for the permutation $\sigma = (4, 6, 2, 9, 0, 1, 8, 5, 7, 3)$ we get the 8 sums 12, 17, 11, 10, 9, 14, 20, 15, and $M(\sigma) = 20$.)

(a) Find a permutation σ_1 such that $M(\sigma_1) = 13$.

(b) Does there exist a permutation σ_2 such that $M(\sigma_2) = 12$?

- 2 Let *TABCD* be a pyramid with top vertex *T*, such that its base *ABCD* is a square of side length 4. It is given that, among the triangles *TAB*, *TBC*, *TCD* and *TDA*, one can find an isosceles triangle and a right-angled triangle. Find all possible values for the volume of the pyramid.
- **3** Let *m* and *n* be positive integers such that m n = 189 and such that the least common multiple of *m* and *n* is equal to 133866. Find *m* and *n*.
- **4** Let *ABCD* be a convex quadrilateral such that $AC \perp BD$.

(a) Prove that $AB^2 + CD^2 = BC^2 + DA^2$.

(b) Let PQRS be a convex quadrilateral such that PQ = AB, QR = BC, RS = CD and SP = DA. Prove that $PR \perp QS$.

5 Find all real solutions of the following equation:

(x+1995)(x+1997)(x+1999)(x+2001)+16=0.

Art of Problem Solving is an ACS WASC Accredited School.