Art of Problem Solving

AoPS Community

Dutch Mathematical Olympiad 1999

www.artofproblemsolving.com/community/c5101
by Arne, Singular

1 Let $f: \mathbb{Z} \rightarrow\{-1,1\}$ be a function such that

$$
f(m n)=f(m) f(n), \forall m, n \in \mathbb{Z}
$$

Show that there exists a positive integer a such that $1 \leq a \leq 12$ and $f(a)=f(a+1)=1$.
2 A 9×9 square consists of 81 unit squares. Some of these unit squares are painted black, and the others are painted white, such that each 2×3 rectangle and each 3×2 rectangle contain exactly 2 black unit squares and 4 white unit squares. Determine the number of black unit squares.

3 Let $A B C D$ be a square and let ℓ be a line. Let M be the centre of the square. The diagonals of the square have length 2 and the distance from M to ℓ exceeds 1 . Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the orthogonal projections of A, B, C, D onto ℓ. Suppose that one rotates the square, such that M is invariant. The positions of $A, B, C, D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ change. Prove that the value of $A A^{2}+$ $B B^{\prime 2}+C C^{\prime 2}+D D^{\prime 2}$ does not change.

4 Consider a matrix of size 8×8, containing positive integers only. One may repeatedly transform the entries of the matrix according to the following rules:
-Multiply all entries in some row by 2.
-Subtract 1 from all entries in some column.
Prove that one can transform the given matrix into the zero matrix.
5 Let c be a nonnegative integer, and define $a_{n}=n^{2}+c$ (for $n \geq 1$). Define d_{n} as the greatest common divisor of a_{n} and a_{n+1}.
(a) Suppose that $c=0$. Show that $d_{n}=1, \forall n \geq 1$.
(b) Suppose that $c=1$. Show that $d_{n} \in\{1,5\}, \forall n \geq 1$.
(c) Show that $d_{n} \leq 4 c+1, \forall n \geq 1$.

