

AoPS Community

Dutch Mathematical Olympiad 1999

www.artofproblemsolving.com/community/c5101 by Arne, Singular

1 Let $f : \mathbb{Z} \to \{-1, 1\}$ be a function such that

 $f(mn) = f(m)f(n), \ \forall m, n \in \mathbb{Z}.$

Show that there exists a positive integer *a* such that $1 \le a \le 12$ and f(a) = f(a+1) = 1.

- 2 A 9×9 square consists of 81 unit squares. Some of these unit squares are painted black, and the others are painted white, such that each 2×3 rectangle and each 3×2 rectangle contain exactly 2 black unit squares and 4 white unit squares. Determine the number of black unit squares.
- **3** Let ABCD be a square and let ℓ be a line. Let M be the centre of the square. The diagonals of the square have length 2 and the distance from M to ℓ exceeds 1. Let A', B', C', D' be the orthogonal projections of A, B, C, D onto ℓ . Suppose that one rotates the square, such that M is invariant. The positions of A, B, C, D, A', B', C', D' change. Prove that the value of $AA'^2 + BB'^2 + CC'^2 + DD'^2$ does not change.
- 4 Consider a matrix of size 8×8 , containing positive integers only. One may repeatedly transform the entries of the matrix according to the following rules:

-Multiply all entries in some row by 2. -Subtract 1 from all entries in some column.

Prove that one can transform the given matrix into the zero matrix.

5 Let c be a nonnegative integer, and define $a_n = n^2 + c$ (for $n \ge 1$). Define d_n as the greatest common divisor of a_n and a_{n+1} . (a) Suppose that c = 0. Show that $d_n = 1$, $\forall n \ge 1$. (b) Suppose that c = 1. Show that $d_n \in \{1, 5\}$, $\forall n \ge 1$. (c) Show that $d_n \le 4c + 1$, $\forall n \ge 1$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.