

AoPS Community

Brazil National Olympiad 1990

www.artofproblemsolving.com/community/c5103 by Johann Peter Dirichlet

1	Show that a convex polyhedron with an odd number of faces has at least one face with an even number of edges.
2	There exists infinitely many positive integers such that $a^3 + 1990b^3 = c^4$.
3	Each face of a tetrahedron is a triangle with sides a, b, c and the tetrahedon has circumradius 1. Find $a^2 + b^2 + c^2$.
4	ABCD is a quadrilateral, E, F, G, H are midpoints of AB, BC, CD, DA . Find the point P such that $area(PHAE) = area(PEBF) = area(PFCG) = area(PGDH)$.
5	Let $f(x) = \frac{ax+b}{cx+d} F_n(x) = f(f(ff(x)))$ (with $n f's$)
	Suppose that $f(0) \neq 0$, $f(f(0)) \neq 0$, and for some n we have $F_n(0) = 0$, show that $F_n(x) = x$ (for any valid x).

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱