AoPS Community

Brazil National Olympiad 1990

www.artofproblemsolving.com/community/c5103
by Johann Peter Dirichlet

1 Show that a convex polyhedron with an odd number of faces has at least one face with an even number of edges.

2 There exists infinitely many positive integers such that $a^{3}+1990 b^{3}=c^{4}$.
3 Each face of a tetrahedron is a triangle with sides a, b, c and the tetrahedon has circumradius 1. Find $a^{2}+b^{2}+c^{2}$.
$4 \quad A B C D$ is a quadrilateral, E, F, G, H are midpoints of $A B, B C, C D, D A$.
Find the point P such that $\operatorname{area}(P H A E)=\operatorname{area}(P E B F)=\operatorname{area}(P F C G)=\operatorname{area}(P G D H)$.
$5 \quad$ Let $f(x)=\frac{a x+b}{c x+d} F_{n}(x)=f(f(f \ldots f(x) \ldots))$ (with $n f^{\prime} s$)
Suppose that $f(0) \neq 0, f(f(0)) \neq 0$, and for some n we have $F_{n}(0)=0$, show that $F_{n}(x)=x$ (for any valid x).

