AoPS Community

Brazil National Olympiad 1991

www.artofproblemsolving.com/community/c5104
by Johann Peter Dirichlet

1 At a party every woman dances with at least one man, and no man dances with every woman. Show that there are men M and M' and women W and W' such that M dances with W, M' dances with W^{\prime}, but M does not dance with W^{\prime}, and M^{\prime} does not dance with W .
$2 \quad P$ is a point inside the triangle $A B C$. The line through P parallel to $A B$ meets $A C A_{0}$ and $B C$ at B_{0}. Similarly, the line through P parallel to $C A$ meets $A B$ at A_{1} and $B C$ at C_{1}, and the line through P parallel to BC meets $A B$ at B_{2} and $A C$ at C_{2}. Find the point P such that $A_{0} B_{0}=A_{1} B_{1}=A_{2} C_{2}$.

3 Given $k>0$, the sequence a_{n} is defined by its first two members and

$$
a_{n+2}=a_{n+1}+\frac{k}{n} a_{n}
$$

a)For which k can we write a_{n} as a polynomial in n ?
b) For which k can we write $\frac{a_{n+1}}{a_{n}}=\frac{p(n)}{q(n)} ?(p, q$ are polynomials in $\mathbb{R}[X])$.

4 Show that there exists $n>2$ such that 1991|1999... 91 (with $n 9$'s).
$5 \quad P_{0}=(1,0), P_{1}=(1,1), P_{2}=(0,1), P_{3}=(0,0) . P_{n+4}$ is the midpoint of $P_{n} P_{n+1} \cdot Q_{n}$ is the quadrilateral $P_{n} P_{n+1} P_{n+2} P_{n+3} . A_{n}$ is the interior of Q_{n}.

Find $\cap_{n \geq 0} A_{n}$.

