AoPS Community

Brazil National Olympiad 1993

www.artofproblemsolving.com/community/c5106
by Johann Peter Dirichlet

1 The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is defined by $a_{1}=8, a_{2}=18, a_{n+2}=a_{n+1} a_{n}$. Find all terms which are perfect squares.

2 A real number with absolute value less than 1 is written in each cell of an $n \times n$ array, so that the sum of the numbers in each 2×2 square is zero. Show that for odd n the sum of all the numbers is less than n.

3 Given a circle and its center O, a point A inside the circle and a distance h, construct a triangle $B A C$ with $\angle B A C=90^{\circ}, B$ and C on the circle and the altitude from A length h.
$4 \quad A B C D$ is a convex quadrilateral with

$$
\begin{aligned}
& \angle B A C=30^{\circ} \\
& \angle C A D=20^{\circ} \\
& \angle A B D=50^{\circ} \\
& \angle D B C=30^{\circ}
\end{aligned}
$$

If the diagonals intersect at P, show that $P C=P D$.
$5 \quad$ Find at least one function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)=0$ and $f(2 x+1)=3 f(x)+5$ for any real x.

