AoPS Community

Brazil National Olympiad 1994

www.artofproblemsolving.com/community/c5107
by Johann Peter Dirichlet

Day 1

1 The edges of a cube are labeled from 1 to 12 in an arbitrary manner. Show that it is not possible to get the sum of the edges at each vertex the same.
Show that we can get eight vertices with the same sum if one of the labels is changed to 13 .
2 Given any convex polygon, show that there are three consecutive vertices such that the polygon lies inside the circle through them.

3 We are given n objects of identical appearance, but different mass, and a balance which can be used to compare any two objects (but only one object can be placed in each pan at a time). How many times must we use the balance to find the heaviest object and the lightest object?

Day 2

4 Let $a, b>0$ be reals such that

$$
a^{3}=a+1 b^{6}=b+3 a
$$

Show that $a>b$
5 Call a super-integer an infinite sequence of decimal digits: $\ldots d_{n} \ldots d_{2} d_{1}$.
(Formally speaking, it is the sequence $\left(d_{1}, d_{2} d_{1}, d_{3} d_{2} d_{1}, \ldots\right)$)
Given two such super-integers $\ldots c_{n} \ldots c_{2} c_{1}$ and $\ldots d_{n} \ldots d_{2} d_{1}$, their product $\ldots p_{n} \ldots p_{2} p_{1}$ is formed by taking $p_{n} \ldots p_{2} p_{1}$ to be the last n digits of the product $c_{n} \ldots c_{2} c_{1}$ and $d_{n} \ldots d_{2} d_{1}$. Can we find two non-zero super-integers with zero product?
(a zero super-integer has all its digits zero)
6 A triangle has semi-perimeter s, circumradius R and inradius r. Show that it is right-angled iff $2 R=s-r$.

