

AoPS Community

1995 Brazil National Olympiad

Brazil National Olympiad 1995

www.artofproblemsolving.com/community/c5108 by Johann Peter Dirichlet, Arne

1	ABCD is a quadrilateral with a circumcircle centre O and an inscribed circle centre I . The diagonals intersect at S . Show that if two of O, I, S coincide, then it must be a square.
2	Find all real-valued functions on the positive integers such that $f(x + 1019) = f(x)$ for all x , and $f(xy) = f(x)f(y)$ for all x, y .
3	For any positive integer $n > 1$, let $P(n)$ denote the largest prime divisor of n . Prove that there exist infinitely many positive integers n for which
	$P\left(n\right) < P\left(n+1\right) < P\left(n+2\right).$

Day 2	
4	A regular tetrahedron has side L . What is the smallest x such that the tetrahedron can be passed through a loop of twine of length x ?
5	Show that no one <i>n</i> -th root of a rational (for <i>n</i> a positive integer) can be a root of the polynomial $x^5 - x^4 - 4x^3 + 4x^2 + 2$.
6	X has n elements. F is a family of subsets of X each with three elements, such that any two of the subsets have at most one element in common. Show that there is a subset of X with at least $\sqrt{2n}$ members which does not contain any members of F.

Act of Problem Solving is an ACS WASC Accredited School.