AoPS Community

Brazil National Olympiad 1996

www.artofproblemsolving.com/community/c5109
by Johann Peter Dirichlet, joao1

Day 1

1 Show that there exists infinite triples $(x, y, z) \in N^{3}$ such that $x^{2}+y^{2}+z^{2}=3 x y z$.
2 Does there exist a set of $n>2, n<\infty$ points in the plane such that no three are collinear and the circumcenter of any three points of the set is also in the set?

3 Let $f(n)$ be the smallest number of 1 s needed to represent the positive integer n using only 1 s , + signs, \times signs and brackets (,). For example, you could represent 80 with 131 s as follows: $(1+1+1+1+1)(1+1+1+1)(1+1+1+1)$. Show that $3 \log (n) \leq \log (3) f(n) \leq 5 \log (n)$ for $n>1$.

Day 2

$4 \quad A B C$ is acute-angled. D s a variable point on the side BC. O_{1} is the circumcenter of $A B D, O_{2}$ is the circumcenter of $A C D$, and O is the circumcenter of $A O_{1} O_{2}$. Find the locus of O.

5 There are n boys $B_{1}, B_{2}, \ldots, B_{n}$ and n girls $G_{1}, G_{2}, \ldots, G_{n}$. Each boy ranks the girls in order of preference, and each girl ranks the boys in order of preference. Show that we can arrange the boys and girls into n pairs so that we cannot find a boy and a girl who prefer each other to their partners.

For example if $\left(B_{1}, G_{3}\right)$ and $\left(B_{4}, G_{7}\right)$ are two of the pairs, then it must not be the case that B_{4} prefers G_{3} to G_{7} and G_{3} prefers B_{4} to B_{1}.

6 Let $\mathrm{p}(\mathrm{x})$ be the polynomial $x^{3}+14 x^{2}-2 x+1$. Let $p^{n}(x)$ denote $p(p(n-1)(x))$. Show that there is an integer \mathbf{N} such that $p^{N}(x)-x$ is divisible by 101 for all integers \mathbf{x}.

