AoPS Community

Brazil National Olympiad 1997

www.artofproblemsolving.com/community/c5110
by Johann Peter Dirichlet

Day 1

1 Given $R, r>0$. Two circles are drawn radius R, r which meet in two points. The line joining the two points is a distance D from the center of one circle and a distance d from the center of the other. What is the smallest possible value for $D+d$?

2 Let A be a set of n non-negative integers. We say it has property \mathcal{P} if the set $\{x+y \mid x, y \in A\}$ has $\binom{n}{2}$ elements. We call the largest element of A minus the smallest element, the diameter of A. Let $f(n)$ be the smallest diameter of any set A with property \mathcal{P}. Show that $n^{2} \leq 4 f(n)<4 n^{3}$.
(If you have some amount of time, try a best estimative for $f(n)$, such that $f(p)<2 p^{2}$ for prime p).

3 a) Show that there are no functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(f(x))=x^{3}$ and $f(g(x))=x^{2}$ for all $x \in \mathbb{R}$.
b) Let S be the set of all real numbers greater than 1 . Show that there are functions $f, g: S \rightarrow S$ satsfying the condition above.

Day 2

4 Let $V_{n}=\sqrt{F_{n}^{2}+F_{n+2}^{2}}$, where F_{n} is the Fibonacci sequence
$\left(F_{1}=F_{2}=1, F_{n+2}=F_{n+1}+F_{n}\right)$
Show that V_{n}, V_{n+1}, V_{n+2} are the sides of a triangle with area $1 / 2$
5 Let $f(x)=x^{2}-C$ where C is a rational constant.
Show that exists only finitely many rationals x such that $\{x, f(x), f(f(x)), \ldots\}$ is finite
$6 \quad f$ is a plane map onto itself such that points at distance 1 are always taken at point at distance 1.

Show that f preserves distances.

