

AoPS Community

1999 Brazil National Olympiad

Brazil National Olympiad 1999

www.artofproblemsolving.com/community/c5112 by Johann Peter Dirichlet, Megus, Arne

Day 1	
1	Let $ABCDE$ be a regular pentagon. The star $ACEBD$ has area 1. AC and BE meet at P , while BD and CE meet at Q . Find the area of $APQD$.
2	Show that, if $\sqrt{2}$ is written in decimal notation, there is at least one nonzero digit at the interval of 1,000,000-th and 3,000,000-th digits.
3	How many coins can be placed on a 10×10 board (each at the center of its square, at most one per square) so that no four coins form a rectangle with sides parallel to the sides of the board?
Day 2	2
4	On planet Zork there are some cities. For every city there is a city at the diametrically oppo- site point. Certain roads join the cities on Zork. If there is a road between cities P and Q , then there is also a road between the cities P' and Q' diametrically opposite to P and Q . In plus, the roads do not cross each other and for any two cities P and Q it is possible to travel from P to Q . The prices of Kriptonita in Urghs (the planetary currency) in two towns connected by a road differ by at most 100. Prove that there exist two diametrically opposite cities in which the prices of Kriptonita differ by at most 100 Urghs.
5	There are n football teams in <i>Tumbolia</i> . A championship is to be organised in which each team plays against every other team exactly once. Ever match takes place on a sunday and each team plays at most one match each sunday. Find the least possible positive integer m_n for which it is possible to set up a championship lasting m_n sundays.
6	Given any triangle <i>ABC</i> , show how to construct <i>A</i> ' on the side <i>AB</i> , <i>B</i> ' on the side <i>BC</i> and <i>C</i> ' on the side <i>CA</i> , such that <i>ABC</i> and <i>A</i> ' <i>B</i> ' <i>C</i> ' are similar (with $\angle A = \angle A', \angle B = \angle B', \angle C = \angle C'$) and <i>A</i> ' <i>B</i> ' <i>C</i> ' has the least possible area.

Act of Problem Solving is an ACS WASC Accredited School.