AoPS Community

1999 Brazil National Olympiad

Brazil National Olympiad 1999

www.artofproblemsolving.com/community/c5112
by Johann Peter Dirichlet, Megus, Arne

Day 1

1 Let $A B C D E$ be a regular pentagon. The star $A C E B D$ has area 1. $A C$ and $B E$ meet at P, while $B D$ and $C E$ meet at Q. Find the area of $A P Q D$.

2 Show that, if $\sqrt{2}$ is written in decimal notation, there is at least one nonzero digit at the interval of 1,000,000-th and 3,000,000-th digits.

3 How many coins can be placed on a 10×10 board (each at the center of its square, at most one per square) so that no four coins form a rectangle with sides parallel to the sides of the board?

Day 2

4 On planet Zork there are some cities. For every city there is a city at the diametrically opposite point. Certain roads join the cities on Zork. If there is a road between cities P and Q, then there is also a road between the cities P^{\prime} and Q^{\prime} diametrically opposite to P and Q. In plus, the roads do not cross each other and for any two cities P and Q it is possible to travel from P to Q.

The prices of Kriptonita in Urghs (the planetary currency) in two towns connected by a road differ by at most 100. Prove that there exist two diametrically opposite cities in which the prices of Kriptonita differ by at most 100 Urghs.

5 There are n football teams in Tumbolia. A championship is to be organised in which each team plays against every other team exactly once. Ever match takes place on a sunday and each team plays at most one match each sunday. Find the least possible positive integer m_{n} for which it is possible to set up a championship lasting m_{n} sundays.

6 Given any triangle $A B C$, show how to construct A^{\prime} on the side $A B, B^{\prime}$ on the side $B C$ and C^{\prime} on the side $C A$, such that $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar (with $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \angle C=\angle C^{\prime}$) and $A^{\prime} B^{\prime} C^{\prime}$ has the least possible area.

