

AoPS Community

2000 Brazil National Olympiad

Brazil National Olympiad 2000

www.artofproblemsolving.com/community/c5113 by Johann Peter Dirichlet, carlosbr

Day 1	
1	A rectangular piece of paper has top edge AD . A line L from A to the bottom edge makes an angle x with the line AD . We want to trisect x . We take B and C on the vertical ege through A such that $AB = BC$. We then fold the paper so that C goes to a point C' on the line L and A goes to a point A' on the horizontal line through B . The fold takes B to B' . Show that AA' and AB' are the required trisectors.
2	Let $s(n)$ be the sum of all positive divisors of n , so $s(6) = 12$. We say n is almost perfect if $s(n) = 2n - 1$. Let $\mod(n, k)$ denote the residue of n modulo k (in other words, the remainder of dividing n by k). Put $t(n) = \mod(n, 1) + \mod(n, 2) + \cdots + \mod(n, n)$. Show that n is almost perfect if and only if $t(n) = t(n - 1)$.
3	Define f on the positive integers by $f(n) = k^2 + k + 1$, where $n = 2^k(2l + 1)$ for some k, l nonnegative integers. Find the smallest n such that $f(1) + f(2) + + f(n) \ge 123456$.
Day 2	2
4	An infinite road has traffic lights at intervals of 1500m. The lights are all synchronised and are alternately green for $\frac{3}{2}$ minutes and red for 1 minute. For which v can a car travel at a constant speed of v m/s without ever going through a red light?
5	Let X the set of all sequences $\{a_1, a_2, \ldots, a_{2000}\}$, such that each of the first 1000 terms is 0, 1 or 2, and each of the remaining terms is 0 or 1. The <i>distance</i> between two members a and b of X is defined as the number of i for which a_i and b_i are different.
	Find the number of functions $f: X \to X$ which preserve the distance.
6	Let it be is a wooden unit cube. We cut along every plane which is perpendicular to the segment joining two distinct vertices and bisects it. How many pieces do we get?

Act of Problem Solving is an ACS WASC Accredited School.