AoPS Community

Brazil National Olympiad 2000

www.artofproblemsolving.com/community/c5113
by Johann Peter Dirichlet, carlosbr

Day 1

1 A rectangular piece of paper has top edge $A D$. A line L from A to the bottom edge makes an angle x with the line $A D$. We want to trisect x. We take B and C on the vertical ege through A such that $A B=B C$. We then fold the paper so that C goes to a point C^{\prime} on the line L and A goes to a point A^{\prime} on the horizontal line through B. The fold takes B to B^{\prime}. Show that $A A^{\prime}$ and $A B^{\prime}$ are the required trisectors.

2 Let $s(n)$ be the sum of all positive divisors of n, so $s(6)=12$. We say n is almost perfect if $s(n)=2 n-1$. Let $\bmod (n, k)$ denote the residue of n modulo k (in other words, the remainder of dividing n by k. Put $t(n)=\bmod (n, 1)+\bmod (n, 2)+\cdots+\bmod (n, n)$.

Show that n is almost perfect if and only if $t(n)=t(n-1)$.
3 Define f on the positive integers by $f(n)=k^{2}+k+1$, where $n=2^{k}(2 l+1)$ for some k, l nonnegative integers.
Find the smallest n such that $f(1)+f(2)+\ldots+f(n) \geq 123456$.

Day 2

4 An infinite road has traffic lights at intervals of 1500 m . The lights are all synchronised and are alternately green for $\frac{3}{2}$ minutes and red for 1 minute. For which v can a car travel at a constant speed of $v \mathrm{~m} / \mathrm{s}$ without ever going through a red light?

5 Let X the set of all sequences $\left\{a_{1}, a_{2}, \ldots, a_{2000}\right\}$, such that each of the first 1000 terms is 0,1 or 2 , and each of the remaining terms is 0 or 1 . The distance between two members a and b of X is defined as the number of i for which a_{i} and b_{i} are different.

Find the number of functions $f: X \rightarrow X$ which preserve the distance.
6 Let it be is a wooden unit cube. We cut along every plane which is perpendicular to the segment joining two distinct vertices and bisects it. How many pieces do we get?

