AoPS Community

Brazil National Olympiad 2001

www.artofproblemsolving.com/community/c5114
by Johann Peter Dirichlet, Fermat -Euler

Day 1

1 Show that for any a, b, c positive reals,

$$
(a+b)(a+c) \geq 2 \sqrt{a b c(a+b+c)}
$$

2 Given $a_{0}>1$, the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is such that for all $k>0, a_{k}$ is the smallest integer greater than a_{k-1} which is relatively prime to all the earlier terms in the sequence.
Find all a_{0} for which all terms of the sequence are primes or prime powers.
$3 \quad A B C$ is a triangle E, F are points in $A B$, such that $A E=E F=F B$
D is a point at the line $B C$ such that $E D$ is perpendiculat to $B C A D$ is perpendicular to $C F$.
The angle CFA is the triple of angle BDF. $(3 \angle B D F=\angle C F A)$
Determine the ratio $\frac{D B}{D C}$.

Day 2

4 A calculator treats angles as radians. It initially displays 1 . What is the largest value that can be achieved by pressing the buttons cos or sin a total of 2001 times? (So you might press cos five times, then sin six times and so on with a total of 2001 presses.)

5 An altitude of a convex quadrilateral is a line through the midpoint of a side perpendicular to the opposite side. Show that the four altitudes are concurrent iff the quadrilateral is cyclic.
$6 \quad$ A one-player game is played as follows: There is a bowl at each integer on the $O x$-axis. All the bowls are initially empty, except for that at the origin, which contains $n \geq 2$ stones. A move is either
(A) to remove two stones from a bowl and place one in each of the two adjacent bowls, or
(B) to remove a stone from each of two adjacent bowls and to add one stone to the bowl immediately to their left.

Show that only a finite number of moves can be made and that the final position (when no more moves are possible) is independent of the moves made (for a given n).

