

AoPS Community

2002 Brazil National Olympiad

Brazil National Olympiad 2002

www.artofproblemsolving.com/community/c5115 by cyshine

Day 1	
1	Show that there is a set of 2002 distinct positive integers such that the sum of one or more elements of the set is never a square, cube, or higher power.
2	ABCD is a cyclic quadrilateral and M a point on the side CD such that ADM and $ABCM$ have the same area and the same perimeter. Show that two sides of $ABCD$ have the same length.
3	The squares of an $m \times n$ board are labeled from 1 to mn so that the squares labeled i and $i + 1$ always have a side in common. Show that for some k the squares k and $k + 3$ have a side in common.
Day 2	
4	For any non-empty subset A of $\{1, 2,, n\}$ define $f(A)$ as the largest element of A minus the smallest element of A. Find $\sum f(A)$ where the sum is taken over all non-empty subsets of $\{1, 2,, n\}$.
5	A finite collection of squares has total area 4 . Show that they can be arranged to cover a square of side 1 .
6	Show that we cannot form more than 4096 binary sequences of length 24 so that any two differ in at least 8 positions.

AoPS Online 🔯 AoPS Academy 🗿 AoPS & Cademy