AoPS Community

Brazil National Olympiad 2003

www.artofproblemsolving.com/community/c5116
by cyshine, hitlEULER, seshadri, darij grinberg

Day 1

$1 \quad$ Find the smallest positive prime that divides $n^{2}+5 n+23$ for some integer n.
2 Let S be a set with n elements. Take a positive integer k. Let $A_{1}, A_{2}, \ldots, A_{k}$ be any distinct subsets of S. For each i take $B_{i}=A_{i}$ or $B_{i}=S-A_{i}$. Find the smallest k such that we can always choose B_{i} so that $\bigcup_{i=1}^{k} B_{i}=S$, no matter what the subsets A_{i} are.
$3 A B C D$ is a rhombus. Take points E, F, G, H on sides $A B, B C, C D, D A$ respectively so that $E F$ and $G H$ are tangent to the incircle of $A B C D$. Show that $E H$ and $F G$ are parallel.

Day 2

1 Given a circle and a point A inside the circle, but not at its center. Find points B, C, D on the circle which maximise the area of the quadrilateral $A B C D$.

2 Let $f(x)$ be a real-valued function defined on the positive reals such that
(1) if $x<y$, then $f(x)<f(y)$,
(2) $f\left(\frac{2 x y}{x+y}\right) \geq \frac{f(x)+f(y)}{2}$ for all x.

Show that $f(x)<0$ for some value of x.
3 A graph G with n vertices is called cool if we can label each vertex with a different positive integer not greater than $\frac{n^{2}}{4}$ and find a set of non-negative integers D so that there is an edge between two vertices iff the difference between their labels is in D. Show that if n is sufficiently large we can always find a graph with n vertices which is not cool.

