

AoPS Community

2003 Brazil National Olympiad

Brazil National Olympiad 2003

www.artofproblemsolving.com/community/c5116 by cyshine, hitlEULER, seshadri, darij grinberg

Day 1	
1	Find the smallest positive prime that divides $n^2 + 5n + 23$ for some integer n .
2	Let <i>S</i> be a set with <i>n</i> elements. Take a positive integer <i>k</i> . Let A_1, A_2, \ldots, A_k be any distinct subsets of <i>S</i> . For each <i>i</i> take $B_i = A_i$ or $B_i = S - A_i$. Find the smallest <i>k</i> such that we can always choose B_i so that $\bigcup_{i=1}^k B_i = S$, no matter what the subsets A_i are.
3	ABCD is a rhombus. Take points E , F , G , H on sides AB , BC , CD , DA respectively so that EF and GH are tangent to the incircle of $ABCD$. Show that EH and FG are parallel.
Day 2	
1	Given a circle and a point A inside the circle, but not at its center. Find points B , C , D on the circle which maximise the area of the quadrilateral $ABCD$.
2	Let $f(x)$ be a real-valued function defined on the positive reals such that
	(1) if $x < y$, then $f(x) < f(y)$,
	(2) $f\left(\frac{2xy}{x+y}\right) \ge \frac{f(x)+f(y)}{2}$ for all x .
	Show that $f(x) < 0$ for some value of x .
3	A graph <i>G</i> with <i>n</i> vertices is called <i>cool</i> if we can label each vertex with a different positive integer not greater than $\frac{n^2}{4}$ and find a set of non-negative integers <i>D</i> so that there is an edge

integer not greater than $\frac{n^2}{4}$ and find a set of non-negative integers D so that there is an edge between two vertices iff the difference between their labels is in D. Show that if n is sufficiently large we can always find a graph with n vertices which is not cool.

AoPS Online 🏟 AoPS Academy 🕸 AoPS & Cast

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.