AoPS Community

Brazil National Olympiad 2004

www.artofproblemsolving.com/community/c5117
by andre.l, grobber, cyshine, pbornsztein, Darkseer, Pascual2005

Day 1 October 16th

1 Let $A B C D$ be a convex quadrilateral. Prove that the incircles of the triangles $A B C, B C D, C D A$ and $D A B$ have a point in common if, and only if, $A B C D$ is a rhombus.

2 Determine all values of n such that it is possible to divide a triangle in n smaller triangles such that there are not three collinear vertices and such that each vertex belongs to the same number of segments.

3 Let $x_{1}, x_{2}, \ldots, x_{2004}$ be a sequence of integer numbers such that $x_{k+3}=x_{k+2}+x_{k} x_{k+1}, \forall 1 \leq$ $k \leq 2001$. Is it possible that more than half of the elements are negative?

Day 2 October 17th

4 Consider all the ways of writing exactly ten times each of the numbers $0,1,2, \ldots, 9$ in the squares of a 10×10 board.
Find the greatest integer n with the property that there is always a row or a column with n different numbers.

5 Consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{0}=a_{1}=a_{2}=a_{3}=1$ and $a_{n} a_{n-4}=a_{n-1} a_{n-3}+a_{n-2}^{2}$. Prove that all the terms of this sequence are integer numbers.
$6 \quad$ Let a and b be real numbers. Define $f_{a, b}: R^{2} \rightarrow R^{2}$ by $f_{a, b}(x ; y)=\left(a-b y-x^{2} ; x\right)$. If $P=(x ; y) \in$ R^{2}, define $f_{a, b}^{0}(P)=P$ and $f_{a, b}^{k+1}(P)=f_{a, b}\left(f_{a, b}^{k}(P)\right)$ for all nonnegative integers k.

The set $\operatorname{per}(a ; b)$ of the periodic points of $f_{a, b}$ is the set of points $P \in R^{2}$ such that $f_{a, b}^{n}(P)=P$ for some positive integer n.

Fix b. Prove that the set $A_{b}=\{a \in R \mid \operatorname{per}(a ; b) \neq \emptyset\}$ admits a minimum. Find this minimum.

