

AoPS Community

2006 Brazil National Olympiad

Brazil National Olympiad 2006

www.artofproblemsolving.com/community/c5119 by cyshine

Day 1

1	Let <i>ABC</i> be a triangle. The internal bisector of $\angle B$ meets <i>AC</i> in <i>P</i> and <i>I</i> is the incenter of <i>ABC</i> . Prove that if $AP + AB = CB$, then <i>API</i> is an isosceles triangle.
2	Let n be an integer, $n \ge 3$. Let $f(n)$ be the largest number of isosceles triangles whose vertices belong to some set of n points in the plane without three colinear points. Prove that there exists positive real constants a and b such that $an^2 < f(n) < bn^2$ for every integer $n, n \ge 3$.

3 Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(xf(y) + f(x)) = 2f(x) + xy$$

for every reals x, y.

Day 2

- **4** A positive integer is *bold* iff it has 8 positive divisors that sum up to 3240. For example, 2006 is bold because its 8 positive divisors, 1, 2, 17, 34, 59, 118, 1003 and 2006, sum up to 3240. Find the smallest positive bold number.
- **5** Let *P* be a convex 2006-gon. The 1003 diagonals connecting opposite vertices and the 1003 lines connecting the midpoints of opposite sides are concurrent, that is, all 2006 lines have a common point. Prove that the opposite sides of *P* are parallel and congruent.
- **6** Professor Piraldo takes part in soccer matches with a lot of goals and judges a match in his own peculiar way. A match with score of m goals to n goals, $m \ge n$, is *tough* when $m \le f(n)$, where f(n) is defined by f(0) = 0 and, for $n \ge 1$, f(n) = 2n f(r) + r, where r is the largest integer such that r < n and $f(r) \le n$.

Let $\phi = \frac{1+\sqrt{5}}{2}$. Prove that a match with score of m goals to $n, m \ge n$, is tough if $m \le \phi n$ and is not tough if $m \ge \phi n + 1$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.