AoPS Community

Brazil National Olympiad 2006

www.artofproblemsolving.com/community/c5119
by cyshine

Day 1

1 Let $A B C$ be a triangle. The internal bisector of $\angle B$ meets $A C$ in P and I is the incenter of $A B C$. Prove that if $A P+A B=C B$, then $A P I$ is an isosceles triangle.

2 Let n be an integer, $n \geq 3$. Let $f(n)$ be the largest number of isosceles triangles whose vertices belong to some set of n points in the plane without three colinear points. Prove that there exists positive real constants a and b such that $a n^{2}<f(n)<b n^{2}$ for every integer $n, n \geq 3$.
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x f(y)+f(x))=2 f(x)+x y
$$

for every reals x, y.

Day 2

4 A positive integer is bold iff it has 8 positive divisors that sum up to 3240 . For example, 2006 is bold because its 8 positive divisors, $1,2,17,34,59,118,1003$ and 2006 , sum up to 3240 . Find the smallest positive bold number.

5 Let P be a convex 2006-gon. The 1003 diagonals connecting opposite vertices and the 1003 lines connecting the midpoints of opposite sides are concurrent, that is, all 2006 lines have a common point. Prove that the opposite sides of P are parallel and congruent.

6 Professor Piraldo takes part in soccer matches with a lot of goals and judges a match in his own peculiar way. A match with score of m goals to n goals, $m \geq n$, is tough when $m \leq f(n)$, where $f(n)$ is defined by $f(0)=0$ and, for $n \geq 1, f(n)=2 n-f(r)+r$, where r is the largest integer such that $r<n$ and $f(r) \leq n$.

Let $\phi=\frac{1+\sqrt{5}}{2}$. Prove that a match with score of m goals to $n, m \geq n$, is tough if $m \leq \phi n$ and is not tough if $m \geq \phi n+1$.

