AoPS Community

2014 Iran Geometry Olympiad (senior)

The senior division problems of the 2014 Iranian Geometry Olympiad.
www.artofproblemsolving.com/community/c512199
by YESMAths, MRF2017

Abstract

1: $\quad \mathrm{ATimo}: \mathrm{ABC}$ is a triangle with $\mathrm{A}=90$ and $\mathrm{C}=30$. Let M be the midpoint of BC . Let W be a circle passing through A tangent in M to $B C$. Let P be the circumcircle of $A B C$. W is intersecting AC in N and P in M . prove that MN is perpendicular to BC .

Let me correct your question and ${ }_{L T} T_{E} X i f y$ it. :)

Question $A B C$ is a triangle with $\angle B A C=90^{\circ}$ and $\angle A C B=30^{\circ}$. Let M_{1} be the midpoint of $B C$. Let W be a circle passing through A tangent in M_{1} to $B C$. Let P be the circumcircle of $A B C$. W is intersecting $A C$ in N and P in M. Prove that $M N$ is perpendicular to $B C$.

Solution

Let M_{1} be the midpoint of $B C$. And let C_{1} be the center of W. So, we first show that $C_{1} \in A C$. Clearly $C_{1} M_{1} \perp B C$. And also, since M_{1} is the center of P as $A B C$ is a right triangle, we have $M_{1} A=M_{1} B=M_{1} C$.
So, $\angle M_{1} A B=\angle M_{1} B A=60^{\circ}$. And this implies that $\triangle A M_{1} B$ is equilateral. So, $\angle C_{1} M_{1} A=$ $90^{\circ}-60^{\circ}=30^{\circ}=\angle C_{1} A M_{1}$.
But then, $\angle C_{1} A M_{1}+\angle M_{1} A B=90^{\circ}=\angle C_{1} A B=\angle C A B$. This shows that $C_{1} \in A C$.
Next $C_{1} N=C_{1} M_{1}$ and $\angle A C_{1} M_{1}=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}=180^{\circ}-\angle N C_{1} M_{1}$, showing that $\triangle N C_{1} M_{1}$ is equilateral.
Again, $C_{1} M=C_{1} A$ showing $\angle C_{1} A M=\angle C_{1} M A$.
Now note that $A M$ is the radical axis of P and W. So, $M_{1} C_{1} \perp A M$. Let $M_{1} C_{1} \cap A M=X$. Then, $A C_{1} X=60^{\circ} \Rightarrow N C_{1} M=180^{\circ}-\angle M C_{1} X-60^{\circ}=60^{\circ}$.
But $C_{1} M=C_{1} N$. Thus $\angle M N C_{1}=\angle N C_{1} M \Rightarrow M N \| M_{1} C_{1} \Rightarrow M N \perp B C$.
This completes the proof. :)
2: In the Quadrilateral $A B C D$ we have $\measuredangle B=\measuredangle D=60^{\circ} . M$ is midpoint of side $A D$. The line through M parallel to $C D$ meets $B C$ at P.Point X lying on $C D$ such that $B X=M X$. Prove that $A B=B P$ if and only if $\measuredangle M X B=60^{\circ}$.
Author: Davoud Vakili, Iran
3: Let $A B C$ be an acute triangle.A circle with diameter $B C$ meets $A B$ and $A C$ at E and F, respectively. M is midpoint of $B C$ and P is point of intersection $A M$ with $E F . X$ is an arbitary point on arc $E F$ and Y is the second intersection of $X P$ with a circle with diameter $B C$.Prove that $\measuredangle X A Y=\measuredangle X Y M$.
Author:Ali zo'alam, Iran

4: A tangent line to circumcircle of acute triangle $A B C(A C>A B)$ at A intersects with the extension of $B C$ at $P . O$ is the circumcenter of triangle $A B C$. Point X lying on $O P$ such that $\measuredangle A X P=90^{\circ}$. Points E and F lying on $A B$ and $A C$,respectively, and they are in one side of line $O P$ such that $\measuredangle E X P=\measuredangle A C X$ and $\measuredangle F X O=\measuredangle A B X . K, L$ are points of intersection $E F$ with circumcircle of triangle $A B C$.prove that $O P$ is tangent to circumcircle of triangle $K L X$.

Author:Mehdi E'tesami Fard, Iran
5: \quad Two points P and Q lying on side $B C$ of triangle $A B C$ and their distance from the midpoint of $B C$ are equal. The perpendiculars from P and Q to $B C$ intersect $A C$ and $A B$ at E and F,respectively. M is point of intersection $P F$ and $E Q$.If H_{1} and H_{2} be the orthocenters of triangles $B F P$ and $C E Q$, respectively, prove that $A M \perp H_{1} H_{2}$.
Author:Mehdi E'tesami Fard, Iran

