

AoPS Community

2014 Iran Geometry Olympiad (senior)

The senior division problems of the 2014 Iranian Geometry Olympiad.

www.artofproblemsolving.com/community/c512199 by YESMAths, MRF2017

1: ATimo : ABC is a triangle with A=90 and C=30.Let M be the midpoint of BC. Let W be a circle passing through A tangent in M to BC. Let P be the circumcircle of ABC. W is intersecting AC in N and P in M. prove that MN is perpendicular to BC.

Let me correct your question and LATEXify it. :)

Question ABC is a triangle with $\angle BAC = 90^{\circ}$ and $\angle ACB = 30^{\circ}$. Let M_1 be the midpoint of \overline{BC} . Let W be a circle passing through A tangent in M_1 to BC. Let P be the circumcircle of ABC. W is intersecting AC in N and P in M. Prove that MN is perpendicular to BC.

Solution

Let M_1 be the midpoint of BC. And let C_1 be the center of W. So, we first show that $C_1 \in AC$. Clearly $C_1M_1 \perp BC$. And also, since M_1 is the center of P as ABC is a right triangle, we have $M_1 A = M_1 B = M_1 C.$ So, $\angle M_1AB = \angle M_1BA = 60^\circ$. And this implies that $\triangle AM_1B$ is equilateral. So, $\angle C_1M_1A =$ $90^{\circ} - 60^{\circ} = 30^{\circ} = \angle C_1 A M_1.$ But then, $\angle C_1 A M_1 + \angle M_1 A B = 90^\circ = \angle C_1 A B = \angle C A B$. This shows that $C_1 \in A C$. Next $C_1 N = C_1 M_1$ and $\angle A C_1 M_1 = 180^\circ - 30^\circ - 30^\circ = 120^\circ = 180^\circ - \angle N \overline{C_1 M_1}$, showing that $\triangle NC_1M_1$ is equilateral. Again, $C_1M = C_1A$ showing $\angle C_1AM = \angle C_1MA$. Now note that AM is the radical axis of P and W. So, $M_1C_1 \perp AM$. Let $M_1C_1 \cap AM = X$. Then, $AC_1 X = 60^{\circ} \Rightarrow NC_1 M = 180^{\circ} - \angle MC_1 X - 60^{\circ} = 60^{\circ}$. But $C_1M = C_1N$. Thus $\angle MNC_1 = \angle NC_1M \Rightarrow MN \parallel M_1C_1 \Rightarrow \mid MN \perp BC \mid$. This completes the proof. :)

2: In the Quadrilateral ABCD we have $\measuredangle B = \measuredangle D = 60^{\circ}.M$ is midpoint of side AD. The line through M parallel to CD meets BC at P.Point X lying on CD such that BX = MX.Prove that AB = BP if and only if $\measuredangle MXB = 60^{\circ}$.

Author: Davoud Vakili, Iran

Let ABC be an acute triangle. A circle with diameter BC meets AB and AC at E and F, respectively. 3: M is midpoint of BC and P is point of intersection AM with EF. X is an arbitrary point on arc EF and Y is the second intersection of XP with a circle with diameter BC. Prove that $\measuredangle XAY = \measuredangle XYM.$ Author.Ali zo'alam, Iran

AoPS Community

2014 Iran Geometry Olympiad (senior)

4: A tangent line to circumcircle of acute triangle ABC (AC > AB) at A intersects with the extension of BC at P. O is the circumcenter of triangle ABC.Point X lying on OP such that $\angle AXP = 90^{\circ}$.Points E and F lying on AB and AC,respectively,and they are in one side of line OP such that $\angle EXP = \angle ACX$ and $\angle FXO = \angle ABX$. K,L are points of intersection EF with circumcircle of triangle ABC.prove that OP is tangent to circumcircle of triangle KLX.

Author.Mehdi E'tesami Fard , Iran

5: Two points *P* and *Q* lying on side *BC* of triangle *ABC* and their distance from the midpoint of *BC* are equal. The perpendiculars from *P* and *Q* to *BC* intersect *AC* and *AB* at *E* and *F*, respectively. *M* is point of intersection *PF* and *EQ*. If H_1 and H_2 be the orthocenters of triangles *BFP* and *CEQ*, respectively, prove that $AM \perp H_1H_2$.

Author.Mehdi E'tesami Fard , Iran

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.