AoPS Community

Brazil National Olympiad 2009

www.artofproblemsolving.com/community/c5122
by cyshine

Day 1

1 Emerald writes 2009^{2} integers in a 2009×2009 table, one number in each entry of the table. She sums all the numbers in each row and in each column, obtaining 4018 sums. She notices that all sums are distinct. Is it possible that all such sums are perfect squares?

2 Let $q=2 p+1, p, q>0$ primes. Prove that there exists a multiple of q whose digits sum in decimal base is positive and at most 3 .

3 There are 2009 pebbles in some points (x, y) with both coordinates integer. A operation consists in choosing a point (a, b) with four or more pebbles, removing four pebbles from (a, b) and putting one pebble in each of the points

$$
(a, b-1),(a, b+1),(a-1, b),(a+1, b)
$$

Show that after a finite number of operations each point will necessarily have at most three pebbles. Prove that the final configuration doesn't depend on the order of the operations.

Day 2

1 Prove that there exists a positive integer n_{0} with the following property: for each integer $n \geq n_{0}$ it is possible to partition a cube into n smaller cubes.

2 Let $A B C$ be a triangle and O its circumcenter. Lines $A B$ and $A C$ meet the circumcircle of $O B C$ again in $B_{1} \neq B$ and $C_{1} \neq C$, respectively, lines $B A$ and $B C$ meet the circumcircle of $O A C$ again in $A_{2} \neq A$ and $C_{2} \neq C$, respectively, and lines $C A$ and $C B$ meet the circumcircle of $O A B$ in $A_{3} \neq A$ and $B_{3} \neq B$, respectively. Prove that lines $A_{2} A_{3}, B_{1} B_{3}$ and $C_{1} C_{2}$ have a common point.

3 Let $n>3$ be a fixed integer and $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Find, in terms of n, all possible real values of

$$
\frac{x_{1}}{x_{n}+x_{1}+x_{2}}+\frac{x_{2}}{x_{1}+x_{2}+x_{3}}+\frac{x_{3}}{x_{2}+x_{3}+x_{4}}+\cdots+\frac{x_{n-1}}{x_{n-2}+x_{n-1}+x_{n}}+\frac{x_{n}}{x_{n-1}+x_{n}+x_{1}}
$$

