AoPS Community

Brazil National Olympiad 2010

www.artofproblemsolving.com/community/c5123
by ffao

Day 1 October 16th

1 Find all functions f from the reals into the reals such that

$$
f(a b)=f(a+b)
$$

for all irrational a, b.
2 Let $P(x)$ be a polynomial with real coefficients. Prove that there exist positive integers n and k such that k has n digits and more than $P(n)$ positive divisors.

3 What is the biggest shadow that a cube of side length 1 can have, with the sun at its peak? Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.

Day 2 October 17th

1 Let $A B C D$ be a convex quadrilateral, and M and N the midpoints of the sides $C D$ and $A D$, respectively. The lines perpendicular to $A B$ passing through M and to $B C$ passing through N intersect at point P. Prove that P is on the diagonal $B D$ if and only if the diagonals $A C$ and $B D$ are perpendicular.

2 Determine all values of n for which there is a set S with n points, with no 3 collinear, with the following property: it is possible to paint all points of S in such a way that all angles determined by three points in S, all of the same color or of three different colors, aren't obtuse. The number of colors available is unlimited.

3 Find all pairs (a, b) of positive integers such that

$$
3^{a}=2 b^{2}+1 .
$$

