AoPS Community

Brazil National Olympiad 2011

www.artofproblemsolving.com/community/c5124
by cyshine, proglote

Day 1 October 15th

1 We call a number pal if it doesn't have a zero digit and the sum of the squares of the digits is a perfect square. For example, 122 and 34 are pal but 304 and 12 are not pal. Prove that there exists a pal number with n digits, $n>1$.

233 friends are collecting stickers for a 2011-sticker album. A distribution of stickers among the 33 friends is incomplete when there is a sticker that no friend has. Determine the least m with the following property: every distribution of stickers among the 33 friends such that, for any two friends, there are at least m stickers both don't have, is incomplete.

3 Prove that, for all convex pentagons $P_{1} P_{2} P_{3} P_{4} P_{5}$ with area 1, there are indices i and j (assume $P_{7}=P_{2}$ and $\left.P_{6}=P_{1}\right)$ such that:

$$
\text { Area of } \triangle P_{i} P_{i+1} P_{i+2} \leq \frac{5-\sqrt{5}}{10} \leq \text { Area of } \triangle P_{j} P_{j+1} P_{j+2}
$$

Day 2 October 16th

4 Do there exist 2011 positive integers $a_{1}<a_{2}<\ldots<a_{2011}$ such that $\operatorname{gcd}\left(a_{i}, a_{j}\right)=a_{j}-a_{i}$ for any i, j such that $1 \leq i<j \leq 2011$?

5 Let $A B C$ be an acute triangle and H is orthocenter. Let D be the intersection of $B H$ and $A C$ and E be the intersection of $C H$ and $A B$. The circumcircle of $A D E$ cuts the circumcircle of $A B C$ at $F \neq A$. Prove that the angle bisectors of $\angle B F C$ and $\angle B H C$ concur at a point on $B C$.

6 Let $a_{1}, a_{2}, a_{3}, \ldots a_{2011}$ be nonnegative reals with sum $\frac{2011}{2}$, prove :
$\left|\prod_{c y c}\left(a_{n}-a_{n+1}\right)\right|=\left|\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right) \ldots\left(a_{2011}-a_{1}\right)\right| \leq \frac{3 \sqrt{3}}{16}$.

