Art of Problem Solving

AoPS Community

2013 Brazil National Olympiad

Brazil National Olympiad 2013

www.artofproblemsolving.com/community/c5126
by proglote

Day 1 October 19th

1 Let Γ be a circle and A a point outside Γ. The tangent lines to Γ through A touch Γ at B and C. Let M be the midpoint of $A B$. The segment $M C$ meets Γ again at D and the line $A D$ meets Γ again at E. Given that $A B=a, B C=b$, compute $C E$ in terms of a and b.

2 Arnaldo and Bernaldo play the following game: given a fixed finite set of positive integers A known by both players, Arnaldo picks a number $a \in A$ but doesn't tell it to anyone. Bernaldo thens pick an arbitrary positive integer b (not necessarily in A). Then Arnaldo tells the number of divisors of $a b$. Show that Bernaldo can choose b in a way that he can find out the number a chosen by Arnaldo.
$3 \quad$ Find all injective functions $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ from the non-zero reals to the non-zero reals, such that

$$
f(x+y)(f(x)+f(y))=f(x y)
$$

for all non-zero reals x, y such that $x+y \neq 0$.

Day 2 October 20th

4 Find the largest n for which there exists a sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ of non-zero digits such that, for each $k, 1 \leq k \leq n$, the k-digit number $\overline{a_{k-1} a_{k-2} \ldots a_{0}}=a_{k-1} 10^{k-1}+a_{k-2} 10^{k-2}+\cdots+a_{0}$ divides the $(k+1)$-digit number $\overline{a_{k} a_{k-1} a_{k-2} \ldots a_{0}}$.
P.S.: This is basically the same problem as http://www.artofproblemsolving.com/Forum/viewtopic.php?f=
$5 \quad$ Let x be an irrational number between 0 and 1 and $x=0 . a_{1} a_{2} a_{3} \cdots$ its decimal representation. For each $k \geq 1$, let $p(k)$ denote the number of distinct sequences $a_{j+1} a_{j+2} \cdots a_{j+k}$ of k consecutive digits in the decimal representation of x. Prove that $p(k) \geq k+1$ for every positive integer k.

6 The incircle of triangle $A B C$ touches sides $B C, C A$ and $A B$ at points D, E and F, respectively. Let P be the intersection of lines $A D$ and $B E$. The reflections of P with respect to $E F, F D$ and $D E$ are X, Y and Z, respectively. Prove that lines $A X, B Y$ and $C Z$ are concurrent at a point on line $I O$, where I and O are the incenter and circumcenter of triangle $A B C$.

