

AoPS Community

2013 Brazil National Olympiad

Brazil National Olympiad 2013

www.artofproblemsolving.com/community/c5126 by proglote

Day 1 October 19th

- **1** Let Γ be a circle and A a point outside Γ . The tangent lines to Γ through A touch Γ at B and C. Let M be the midpoint of AB. The segment MC meets Γ again at D and the line AD meets Γ again at E. Given that AB = a, BC = b, compute CE in terms of a and b.
- **2** Arnaldo and Bernaldo play the following game: given a fixed finite set of positive integers A known by both players, Arnaldo picks a number $a \in A$ but doesn't tell it to anyone. Bernaldo thens pick an arbitrary positive integer b (not necessarily in A). Then Arnaldo tells the number of divisors of ab. Show that Bernaldo can choose b in a way that he can find out the number a chosen by Arnaldo.
- **3** Find all injective functions $f : \mathbb{R}^* \to \mathbb{R}^*$ from the non-zero reals to the non-zero reals, such that

$$f(x+y) \left(f(x) + f(y) \right) = f(xy)$$

for all non-zero reals x, y such that $x + y \neq 0$.

Day 2 October 20th

4 Find the largest *n* for which there exists a sequence (a_0, a_1, \ldots, a_n) of non-zero digits such that, for each $k, 1 \le k \le n$, the *k*-digit number $\overline{a_{k-1}a_{k-2}\dots a_0} = a_{k-1}10^{k-1} + a_{k-2}10^{k-2} + \cdots + a_0$ divides the (k+1)-digit number $\overline{a_ka_{k-1}a_{k-2}\dots a_0}$.

P.S.: This is basically the same problem as http://www.artofproblemsolving.com/Forum/viewtopic.php?f=

- **5** Let x be an irrational number between 0 and 1 and $x = 0.a_1a_2a_3\cdots$ its decimal representation. For each $k \ge 1$, let p(k) denote the number of distinct sequences $a_{j+1}a_{j+2}\cdots a_{j+k}$ of k consecutive digits in the decimal representation of x. Prove that $p(k) \ge k + 1$ for every positive integer k.
- **6** The incircle of triangle *ABC* touches sides *BC*, *CA* and *AB* at points *D*, *E* and *F*, respectively. Let *P* be the intersection of lines *AD* and *BE*. The reflections of *P* with respect to *EF*, *FD* and *DE* are *X*, *Y* and *Z*, respectively. Prove that lines *AX*, *BY* and *CZ* are concurrent at a point on line *IO*, where *I* and *O* are the incenter and circumcenter of triangle *ABC*.