

AoPS Community

2014 Brazil National Olympiad

Brazil National Olympiad 2014

www.artofproblemsolving.com/community/c5127 by cyshine

Day 1

1	Let $ABCD$ be a convex quadrilateral. Diagonals AC and BD meet at point P . The inradii of triangles ABP , BCP , CDP and DAP are equal. Prove that $ABCD$ is a rhombus.
2	Find all integers $n, n > 1$, with the following property: for all $k, 0 \le k < n$, there exists a multiple of n whose digits sum leaves a remainder of k when divided by n .
3	Let N be an integer, $N > 2$. Arnold and Bernold play the following game: there are initially N tokens on a pile. Arnold plays first and removes k tokens from the pile, $1 \le k < N$. Then Bernold removes m tokens from the pile, $1 \le m \le 2k$ and so on, that is, each player, on its turn, removes a number of tokens from the pile that is between 1 and twice the number of tokens his opponent took last. The player that removes the last token wins. For each value of N , find which player has a winning strategy and describe it.

Day 2

4 The infinite sequence $P_0(x), P_1(x), P_2(x), \dots, P_n(x), \dots$ is defined as

 $P_0(x) = x$, $P_n(x) = P_{n-1}(x-1) \cdot P_{n-1}(x+1)$, $n \ge 1$.

Find the largest k such that $P_{2014}(x)$ is divisible by x^k .

- **5** There is an integer in each cell of a $2m \times 2n$ table. We define the following operation: choose three cells forming an L-tromino (namely, a cell *C* and two other cells sharing a side with *C*, one being horizontal and the other being vertical) and sum 1 to each integer in the three chosen cells. Find a necessary and sufficient condition, in terms of *m*, *n* and the initial numbers on the table, for which there exists a sequence of operations that makes all the numbers on the table equal.
- **6** Let ABC be a triangle with incenter I and incircle ω . Circle ω_A is externally tangent to ω and tangent to sides AB and AC at A_1 and A_2 , respectively. Let r_A be the line A_1A_2 . Define r_B and r_C in a similar fashion. Lines r_A , r_B and r_C determine a triangle XYZ. Prove that the incenter of XYZ, the circumcenter of XYZ and I are collinear.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2019 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.