

AoPS Community

Brazil Undergrad MO 2005

www.artofproblemsolving.com/community/c5128

by cyshine, aodeath, Cezar Lupu, IgorCastro, alekk, Kent Merryfield

Day 1 October 22nd

- 1 Determine the number of possible values for the determinant of A, given that A is a $n \times n$ matrix with real entries such that $A^3 A^2 3A + 2I = 0$, where I is the identity and 0 is the all-zero matrix.
- **2** Let *f* and *g* be two continuous, distinct functions from $[0,1] \to (0,+\infty)$ such that $\int_0^1 f(x)dx = \int_0^1 g(x)dx$

Let $y_n = \int_0^1 \frac{f^{n+1}(x)}{g^n(x)} dx$, for $n \ge 0$, natural.

Prove that (y_n) is an increasing and divergent sequence.

3 Let v_1, v_2, \ldots, v_n vectors in \mathbb{R}^2 such that $|v_i| \le 1$ for $1 \le i \le n$ and $\sum_{i=1}^n v_i = 0$. Prove that there exists a permutation σ of $(1, 2, \ldots, n)$ such that $\left|\sum_{j=1}^k v_{\sigma(j)}\right| \le \sqrt{5}$ for every $k, 1 \le k \le n$.

Remark: If $v = (x, y) \in \mathbb{R}^2$, $|v| = \sqrt{x^2 + y^2}$.

Day 2 October 23rd

- 4 Let $a_{n+1} = a_n + \frac{1}{a_n^{2005}}$ and $a_1 = 1$. Show that $\sum_{n=1}^{\infty} \frac{1}{na_n}$ converge.
- 5 Prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^n} = \int_0^1 x^{-x} \, dx.$$

6 Prove that for any natural numbers $0 \le i_1 < i_2 < \cdots < i_k$ and $0 \le j_1 < j_2 < \cdots < j_k$, the matrix $A = (a_{rs})_{1 \le r,s \le k}$, $a_{rs} = {i_r+j_s \choose i_r} = {(i_r+j_s)! \choose i_r! j_s!}$ ($1 \le r, s \le k$) is nonsingular.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱 🕅

Art of Problem Solving is an ACS WASC Accredited School.