Art of Problem Solving

AoPS Community

Brazil Undergrad MO 2005

www.artofproblemsolving.com/community/c5128
by cyshine, aodeath, Cezar Lupu, IgorCastro, alekk, Kent Merryfield

Day 1 October 22nd

1 Determine the number of possible values for the determinant of A, given that A is a $n \times n$ matrix with real entries such that $A^{3}-A^{2}-3 A+2 I=0$, where I is the identity and 0 is the all-zero matrix.

2 Let f and g be two continuous, distinct functions from $[0,1] \rightarrow(0,+\infty)$ such that
$\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x$
Let
$y_{n}=\int_{0}^{1} \frac{f^{n+1}(x)}{g^{n}(x)} d x$, for $n \geq 0$, natural.
Prove that $\left(y_{n}\right)$ is an increasing and divergent sequence.
3 Let $v_{1}, v_{2}, \ldots, v_{n}$ vectors in \mathbb{R}^{2} such that $\left|v_{i}\right| \leq 1$ for $1 \leq i \leq n$ and $\sum_{i=1}^{n} v_{i}=0$. Prove that there exists a permutation σ of $(1,2, \ldots, n)$ such that $\left|\sum_{j=1}^{k} v_{\sigma(j)}\right| \leq \sqrt{5}$ for every $k, 1 \leq k \leq n$.

Remark: If $v=(x, y) \in \mathbb{R}^{2},|v|=\sqrt{x^{2}+y^{2}}$.
Day 2 October 23rd
4 Let $a_{n+1}=a_{n}+\frac{1}{a_{n} 2005}$ and $a_{1}=1$. Show that $\sum_{n=1}^{\infty} \frac{1}{n a_{n}}$ converge.
5 Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{n}}=\int_{0}^{1} x^{-x} d x
$$

6 Prove that for any natural numbers $0 \leq i_{1}<i_{2}<\cdots<i_{k}$ and $0 \leq j_{1}<j_{2}<\cdots<j_{k}$, the matrix $A=\left(a_{r s}\right)_{1 \leq r, s \leq k}, a_{r s}=\binom{i_{r}+j_{s}}{i_{r}}=\frac{\left(i_{r}+j_{s}\right)!}{i_{r}!j_{s}!}(1 \leq r, s \leq k)$ is nonsingular.

