Art of Problem Solving

Baltic Way 1992

www.artofproblemsolving.com/community/c5131
by WakeUp, gwen01

1 Let p, q be two consecutive odd prime numbers. Prove that $p+q$ is a product of at least 3 natural numbers greater than 1 (not necessarily different).

2 Denote by $d(n)$ the number of all positive divisors of a natural number n (including 1 and n). Prove that there are infinitely many n, such that $n / d(n)$ is an integer.

3 Find an infinite non-constant arithmetic progression of natural numbers such that each term is neither a sum of two squares, nor a sum of two cubes (of natural numbers).

4 Is it possible to draw a hexagon with vertices in the knots of an integer lattice so that the squares of the lengths of the sides are six consecutive positive integers?
$5 \quad$ It is given that $a^{2}+b^{2}+(a+b)^{2}=c^{2}+d^{2}+(c+d)^{2}$. Prove that $a^{4}+b^{4}+(a+b)^{4}=c^{4}+d^{4}+(c+d)^{4}$.

6 Prove that the product of the 99 numbers $\frac{k^{3}-1}{k^{3}+1}, k=2,3, \ldots, 100$ is greater than $2 / 3$.
7 Let $a=\sqrt[1992]{1992}$. Which number is greater

$$
\underbrace{a^{a^{a^{\omega^{a}}}}}_{1992} \text { or } 1992 ?
$$

$8 \quad$ Find all integers satisfying the equation $2^{x} \cdot(4-x)=2 x+4$.
9 A polynomial $f(x)=x^{3}+a x^{2}+b x+c$ is such that $b<0$ and $a b=9 c$. Prove that the polynomial f has three different real roots.

10 Find all fourth degree polynomial $p(x)$ such that the following four conditions are satisfied:
(i) $p(x)=p(-x)$ for all x,
(ii) $p(x) \geq 0$ for all x,
(iii) $p(0)=1$
(iv) $p(x)$ has exactly two local minimum points x_{1} and x_{2} such that $\left|x_{1}-x_{2}\right|=2$.

11 Let Q^{+}denote the set of positive rational numbers. Show that there exists one and only one function $f: Q^{+} \rightarrow Q^{+}$satisfying the following conditions:
(i) If $0<q<1 / 2$ then $f(q)=1+f(q /(1-2 q))$,

AoPS Community

(ii) If $1<q \leq 2$ then $f(q)=1+f(q-1)$,
(iii) $f(q) \cdot f(1 / q)=1$ for all $q \in Q^{+}$.

12 Let N denote the set of natural numbers. Let $\phi: N \rightarrow N$ be a bijective function and assume that there exists a finite limit

$$
\lim _{n \rightarrow \infty} \frac{\phi(n)}{n}=L
$$

What are the possible values of L ?
13 Prove that for any positive $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ the inequality

$$
\sum_{i=1}^{n} \frac{1}{x_{i} y_{i}} \geq \frac{4 n^{2}}{\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2}}
$$

holds.
14 There is a finite number of towns in a country. They are connected by one direction roads. It is known that, for any two towns, one of them can be reached from another one. Prove that there is a town such that all remaining towns can be reached from it.

15 Noah has 8 species of animals to fit into 4 cages of the ark. He plans to put species in each cage. It turns out that, for each species, there are at most 3 other species with which it cannot share the accomodation. Prove that there is a way to assign the animals to their cages so that each species shares with compatible species.

16 All faces of a convex polyhedron are parallelograms. Can the polyhedron have exactly 1992 faces?

17 Quadrangle $A B C D$ is inscribed in a circle with radius 1 in such a way that the diagonal $A C$ is a diameter of the circle, while the other diagonal $B D$ is as long as $A B$. The diagonals intersect at P. It is known that the length of $P C$ is $2 / 5$. How long is the side $C D$?

18 Show that in a non-obtuse triangle the perimeter of the triangle is always greater than two times the diameter of the circumcircle.

19 Let C be a circle in plane. Let C_{1} and C_{2} be nonintersecting circles touching C internally at points A and B respectively. Let t be a common tangent of C_{1} and C_{2} touching them at points D and E respectively, such that both C_{1} and C_{2} are on the same side of t. Let F be the point of intersection of $A D$ and $B E$. Show that F lies on C.

20 Let $a \leq b \leq c$ be the sides of a right triangle, and let $2 p$ be its perimeter. Show that

$$
p(p-c)=(p-a)(p-b)=S
$$

where S is the area of the triangle.

