1992 Baltic Way

AoPS Community

Baltic Way 1992

www.artofproblemsolving.com/community/c5131 by WakeUp, gwen01

- 1 Let p, q be two consecutive odd prime numbers. Prove that p + q is a product of at least 3 natural numbers greater than 1 (not necessarily different).
- **2** Denote by d(n) the number of all positive divisors of a natural number n (including 1 and n). Prove that there are infinitely many n, such that n/d(n) is an integer.
- **3** Find an infinite non-constant arithmetic progression of natural numbers such that each term is neither a sum of two squares, nor a sum of two cubes (of natural numbers).
- 4 Is it possible to draw a hexagon with vertices in the knots of an integer lattice so that the squares of the lengths of the sides are six consecutive positive integers?
- 5 It is given that $a^2 + b^2 + (a+b)^2 = c^2 + d^2 + (c+d)^2$. Prove that $a^4 + b^4 + (a+b)^4 = c^4 + d^4 + (c+d)^4$.
- **6** Prove that the product of the 99 numbers $\frac{k^3-1}{k^3+1}$, k = 2, 3, ..., 100 is greater than 2/3.
- 7 Let $a = \sqrt[1992]{1992}$. Which number is greater

$$\underbrace{a^{a^{a^{...a}}}_{1992}}_{1992}$$
 or 1992?

- **8** Find all integers satisfying the equation $2^x \cdot (4 x) = 2x + 4$.
- **9** A polynomial $f(x) = x^3 + ax^2 + bx + c$ is such that b < 0 and ab = 9c. Prove that the polynomial f has three different real roots.
- 10 Find all fourth degree polynomial p(x) such that the following four conditions are satisfied: (i) p(x) = p(-x) for all x, (ii) $p(x) \ge 0$ for all x, (iii) p(0) = 1(iv) p(x) has exactly two local minimum points x_1 and x_2 such that $|x_1 - x_2| = 2$.
- 11 Let Q^+ denote the set of positive rational numbers. Show that there exists one and only one function $f: Q^+ \to Q^+$ satisfying the following conditions: (i) If 0 < q < 1/2 then f(q) = 1 + f(q/(1-2q)),

AoPS Community

(ii) If $1 < q \le 2$ then f(q) = 1 + f(q - 1), (iii) $f(q) \cdot f(1/q) = 1$ for all $q \in Q^+$.

12 Let *N* denote the set of natural numbers. Let $\phi : N \to N$ be a bijective function and assume that there exists a finite limit

$$\lim_{n \to \infty} \frac{\phi(n)}{n} = L.$$

What are the possible values of *L*?

13 Prove that for any positive $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ the inequality

$$\sum_{i=1}^{n} \frac{1}{x_i y_i} \ge \frac{4n^2}{\sum_{i=1}^{n} (x_i + y_i)^2}$$

holds.

- 14 There is a finite number of towns in a country. They are connected by one direction roads. It is known that, for any two towns, one of them can be reached from another one. Prove that there is a town such that all remaining towns can be reached from it.
- 15 Noah has 8 species of animals to fit into 4 cages of the ark. He plans to put species in each cage. It turns out that, for each species, there are at most 3 other species with which it cannot share the accomodation. Prove that there is a way to assign the animals to their cages so that each species shares with compatible species.
- **16** All faces of a convex polyhedron are parallelograms. Can the polyhedron have exactly 1992 faces?
- 17 Quadrangle ABCD is inscribed in a circle with radius 1 in such a way that the diagonal AC is a diameter of the circle, while the other diagonal BD is as long as AB. The diagonals intersect at P. It is known that the length of PC is 2/5. How long is the side CD?
- **18** Show that in a non-obtuse triangle the perimeter of the triangle is always greater than two times the diameter of the circumcircle.
- **19** Let *C* be a circle in plane. Let C_1 and C_2 be nonintersecting circles touching *C* internally at points *A* and *B* respectively. Let *t* be a common tangent of C_1 and C_2 touching them at points *D* and *E* respectively, such that both C_1 and C_2 are on the same side of *t*. Let *F* be the point of intersection of *AD* and *BE*. Show that *F* lies on *C*.
- **20** Let $a \le b \le c$ be the sides of a right triangle, and let 2p be its perimeter. Show that

$$p(p-c) = (p-a)(p-b) = S,$$

where S is the area of the triangle.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.