AoPS Community

Baltic Way 2001

www.artofproblemsolving.com/community/c5140
by WakeUp, hasan4444

1 A set of 8 problems was prepared for an examination. Each student was given 3 of them. No two students received more than one common problem. What is the largest possible number of students?

2 Let $n \geq 2$ be a positive integer. Find whether there exist n pairwise nonintersecting nonempty subsets of $\{1,2,3, \ldots\}$ such that each positive integer can be expressed in a unique way as a sum of at most n integers, all from different subsets.

3 The numbers $1,2, \ldots 49$ are placed in a 7×7 array, and the sum of the numbers in each row and in each column is computed. Some of these 14 sums are odd while others are even. Let A denote the sum of all the odd sums and B the sum of all even sums. Is it possible that the numbers were placed in the array in such a way that $A=B$?

4 Let p and q be two different primes. Prove that

$$
\left\lfloor\frac{p}{q}\right\rfloor+\left\lfloor\frac{2 p}{q}\right\rfloor+\left\lfloor\frac{3 p}{q}\right\rfloor+\ldots+\left\lfloor\frac{(q-1) p}{q}\right\rfloor=\frac{1}{2}(p-1)(q-1)
$$

5 Let 2001 given points on a circle be coloured either red or green. In one step all points are recoloured simultaneously in the following way: If both direct neighbours of a point P have the same colour as P, then the colour of P remains unchanged, otherwise P obtains the other colour. Starting with the first colouring F_{1}, we obtain the colourings F_{2}, F_{3}, \ldots after several recolouring steps. Prove that there is a number $n_{0} \leq 1000$ such that $F_{n_{0}}=F_{n_{0}+2}$. Is the assertion also true if 1000 is replaced by 999 ?

6 The points A, B, C, D, E lie on the circle c in this order and satisfy $A B \| E C$ and $A C \| E D$. The line tangent to the circle c at E meets the line $A B$ at P. The lines $B D$ and $E C$ meet at Q. Prove that $|A C|=|P Q|$.

7 Given a parallelogram $A B C D$. A circle passing through A meets the line segments $A B, A C$ and $A D$ at inner points M, K, N, respectively. Prove that

$$
|A B| \cdot|A M|+|A D| \cdot|A N|=|A K| \cdot|A C|
$$

AoPS Community

8 Let $A B C D$ be a convex quadrilateral, and let N be the midpoint of $B C$. Suppose further that $\angle A N D=135^{\circ}$.
Prove that $|A B|+|C D|+\frac{1}{\sqrt{2}} \cdot|B C| \geq|A D|$.
9 Given a rhombus $A B C D$, find the locus of the points P lying inside the rhombus and satisfying $\angle A P D+\angle B P C=180^{\circ}$.

10 In a triangle $A B C$, the bisector of $\angle B A C$ meets the side $B C$ at the point D. Knowing that $|B D| \cdot|C D|=|A D|^{2}$ and $\angle A D B=45^{\circ}$, determine the angles of triangle $A B C$.

11 The real-valued function f is defined for all positive integers. For any integers $a>1, b>1$ with $d=\operatorname{gcd}(a, b)$, we have

$$
f(a b)=f(d)\left(f\left(\frac{a}{d}\right)+f\left(\frac{b}{d}\right)\right)
$$

Determine all possible values of $f(2001)$.
12 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $\sum_{i=1}^{n} a_{i}^{3}=3$ and $\sum_{i=1}^{n} a_{i}^{5}=5$. Prove that $\sum_{i=1}^{n} a_{i}>\frac{3}{2}$.

13 Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of real numbers satisfying $a_{0}=1$ and $a_{n}=a_{\lfloor 7 n / 9\rfloor}+a_{\lfloor n / 9\rfloor}$ for $n=1,2, \ldots$
Prove that there exists a positive integer k with $a_{k}<\frac{k}{2001!}$.
14 There are $2 n$ cards. On each card some real number $x,(1 \leq x \leq 2 n)$, is written (there can be different numbers on different cards). Prove that the cards can be divided into two heaps with sums s_{1} and s_{2} so that $\frac{n}{n+1} \leq \frac{s_{1}}{s_{2}} \leq 1$.

15 Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive real numbers satisfying $i \cdot a_{2} \geq(i+1) \cdot a_{i_{1}} a_{i+1}$ for $i=1,2, \ldots$ Furthermore, let x and y be positive reals, and let $b_{i}=x a_{i}+y a_{i-1}$ for $i=1,2, \ldots$ Prove that the inequality $i \cdot b_{2} \geq(i+1) \cdot b_{i-1} b_{i+1}$ holds for all integers $i \geq 2$.

16 Let f be a real-valued function defined on the positive integers satisfying the following condition: For all $n>1$ there exists a prime divisor p of n such that $f(n)=f\left(\frac{n}{p}\right)-f(p)$. Given that $f(2001)=1$, what is the value of $f(2002)$?

17 Let n be a positive integer. Prove that at least $2^{n-1}+n$ numbers can be chosen from the set $\left\{1,2,3, \ldots, 2^{n}\right\}$ such that for any two different chosen numbers x and $y, x+y$ is not a divisor of $x \cdot y$.

18 Let a be an odd integer. Prove that $a^{2^{m}}+2^{2^{m}}$ and $a^{2^{n}}+2^{2^{n}}$ are relatively prime for all positive integers n and m with $n \neq m$.

19 What is the smallest positive odd integer having the same number of positive divisors as 360 ?

20 From a sequence of integers (a, b, c, d) each of the sequences

$$
(c, d, a, b), \quad(b, a, d, c), \quad(a+n c, b+n d, c, d), \quad(a+n b, b, c+n d, d)
$$

for arbitrary integer n can be obtained by one step. Is it possible to obtain (3, 4, 5, 7) from $(1,2,3,4)$ through a sequence of such steps?

