

AoPS Community

Baltic Way 2011

www.artofproblemsolving.com/community/c5150 by WakeUp

1 The real numbers x_1, \ldots, x_{2011} satisfy $x_1 + x_2 = 2x'_1, x_2 + x_3 = 2x'_2, \dots, x_{2011} + x_1 = 2x'_{2011}$ where $x'_1, x'_2, ..., x'_{2011}$ is a permutation of $x_1, x_2, ..., x_{2011}$. Prove that $x_1 = x_2 = ... = x_{2011}$. 2 Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function such that for all integers x and y, the following holds: f(f(x) - y) = f(y) - f(f(x)).Show that *f* is bounded. 3 A sequence a_1, a_2, a_3, \ldots of non-negative integers is such that a_{n+1} is the last digit of $a_n^n + a_{n-1}$ for all n > 2. Is it always true that for some n_0 the sequence $a_{n_0}, a_{n_0+1}, a_{n_0+2}, \ldots$ is periodic? Let a, b, c, d be non-negative reals such that a + b + c + d = 4. Prove the inequality 4 $\frac{a}{a^3+8} + \frac{b}{b^3+8} + \frac{c}{c^3+8} + \frac{d}{d^3+8} \le \frac{4}{9}$ 5 Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $f(f(x)) = x^2 - x + 1$ for all real numbers x. Determine f(0). 6 Let n be a positive integer. Prove that the number of lines which go through the origin and precisely one other point with integer coordinates $(x, y), 0 \le x, y \le n$, is at least $\frac{n^2}{4}$. 7 Let T denote the 15-element set $\{10a + b : a, b \in \mathbb{Z}, 1 \le a \le b \le 6\}$. Let S be a subset of T in which all six digits $1, 2, \ldots, 6$ appear and in which no three elements together use all these six digits. Determine the largest possible size of S.

8 In Greifswald there are three schools called *A*, *B* and *C*, each of which is attended by at least one student. Among any three students, one from *A*, one from *B* and one from *C*, there are two knowing each other and two not knowing each other. Prove that at least one of the following holds:

AoPS Community

	-Some student from A knows all students from B . -Some student from B knows all students from C . - Some student from C knows all students from A .
9	Given a rectangular grid, split into $m \times n$ squares, a colouring of the squares in two colours (black and white) is called valid if it satisfies the following conditions:
	-All squares touching the border of the grid are coloured black. -No four squares forming a 2×2 square are coloured in the same colour. -No four squares forming a 2×2 square are coloured in such a way that only diagonally touching squares have the same colour. Which grid sizes $m \times n$ (with $m, n \ge 3$) have a valid colouring?
10	Two persons play the following game with integers. The initial number is 2011^{2011} . The players move in turns. Each move consists of subtraction of an integer between 1 and 2010 inclusive, or division by 2011 , rounding down to the closest integer when necessary. The player who first obtains a non-positive integer wins. Which player has a winning strategy?
11	Let AB and CD be two diameters of the circle C . For an arbitrary point P on C , let R and S be the feet of the perpendiculars from P to AB and CD , respectively. Show that the length of RS is independent of the choice of P .
12	Let P be a point inside a square ABCD such that $PA : PB : PC$ is $1 : 2 : 3$. Determine the angle $\angle BPA$.
13	Let <i>E</i> be an interior point of the convex quadrilateral <i>ABCD</i> . Construct triangles $\triangle ABF$, $\triangle BCG$, $\triangle CJ$ and $\triangle DAI$ on the outside of the quadrilateral such that the similarities $\triangle ABF \sim \triangle DCE$, $\triangle BCG \sim \triangle ADE$, $\triangle CDH \sim \triangle BAE$ and $\triangle DAI \sim \triangle CBE$ hold. Let <i>P</i> , <i>Q</i> , <i>R</i> and <i>S</i> be the projections of <i>E</i> on the lines <i>AB</i> , <i>BC</i> , <i>CD</i> and <i>DA</i> , respectively. Prove that if the quadrilateral <i>PQRS</i> is cyclic, then $EF \cdot CD = EG \cdot DA = EH \cdot AB = EI \cdot BC.$
14	The incircle of a triangle ABC touches the sides BC , CA , AB at D , E , F , respectively. Let G be a point on the incircle such that FG is a diameter. The lines EG and FD intersect at H . Prove that $CH \parallel AB$.
15	Let <i>ABCD</i> be a convex quadrilateral such that $\angle ADB = \angle BDC$. Suppose that a point <i>E</i> on the side <i>AD</i> satisfies the equality

$$AE \cdot ED + BE^2 = CD \cdot AE.$$

Show that $\angle EBA = \angle DCB$.

16	Let a be any integer. Define the sequence x_0, x_1, \dots by $x_0 = a$, $x_1 = 3$, and for all $n > 1$
	$x_n = 2x_{n-1} - 4x_{n-2} + 3.$
	Determine the largest integer k_a for which there exists a prime p such that p^{k_a} divides $x_{2011} - 1$.
17	Determine all positive integers d such that whenever d divides a positive integer n , d will also divide any integer obtained by rearranging the digits of n .
18	Determine all pairs (p,q) of primes for which both $p^2 + q^3$ and $q^2 + p^3$ are perfect squares.
19	Let $p \neq 3$ be a prime number. Show that there is a non-constant arithmetic sequence of positive integers x_1, x_2, \ldots, x_p such that the product of the terms of the sequence is a cube.
20	An integer $n \ge 1$ is called balanced if it has an even number of distinct prime divisors. Prove that there exist infinitely many positive integers n such that there are exactly two balanced numbers among $n, n + 1, n + 2$ and $n + 3$.

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.