AoPS Community

Baltic Way 2011
www.artofproblemsolving.com/community/c5150
by WakeUp

1 The real numbers x_{1}, \ldots, x_{2011} satisfy

$$
x_{1}+x_{2}=2 x_{1}^{\prime}, x_{2}+x_{3}=2 x_{2}^{\prime}, \ldots, x_{2011}+x_{1}=2 x_{2011}^{\prime}
$$

where $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{2011}^{\prime}$ is a permutation of $x_{1}, x_{2}, \ldots, x_{2011}$. Prove that $x_{1}=x_{2}=\ldots=x_{2011}$.
2 Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that for all integers x and y, the following holds:

$$
f(f(x)-y)=f(y)-f(f(x)) .
$$

Show that f is bounded.
3 A sequence $a_{1}, a_{2}, a_{3}, \ldots$ of non-negative integers is such that a_{n+1} is the last digit of $a_{n}^{n}+a_{n-1}$ for all $n>2$. Is it always true that for some n_{0} the sequence $a_{n_{0}}, a_{n_{0}+1}, a_{n_{0}+2}, \ldots$ is periodic?

4 Let a, b, c, d be non-negative reals such that $a+b+c+d=4$. Prove the inequality

$$
\frac{a}{a^{3}+8}+\frac{b}{b^{3}+8}+\frac{c}{c^{3}+8}+\frac{d}{d^{3}+8} \leq \frac{4}{9}
$$

$5 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$
f(f(x))=x^{2}-x+1
$$

for all real numbers x. Determine $f(0)$.
6 Let n be a positive integer. Prove that the number of lines which go through the origin and precisely one other point with integer coordinates $(x, y), 0 \leq x, y \leq n$, is at least $\frac{n^{2}}{4}$.

7 Let T denote the 15 -element set $\{10 a+b: a, b \in \mathbb{Z}, 1 \leq a<b \leq 6\}$. Let S be a subset of T in which all six digits $1,2, \ldots, 6$ appear and in which no three elements together use all these six digits. Determine the largest possible size of S.

8 In Greifswald there are three schools called A, B and C, each of which is attended by at least one student. Among any three students, one from A, one from B and one from C, there are two knowing each other and two not knowing each other. Prove that at least one of the following holds:
-Some student from A knows all students from B.
-Some student from B knows all students from C.

- Some student from C knows all students from A.

9 Given a rectangular grid, split into $m \times n$ squares, a colouring of the squares in two colours (black and white) is called valid if it satisfies the following conditions:
-All squares touching the border of the grid are coloured black.
-No four squares forming a 2×2 square are coloured in the same colour.
-No four squares forming a 2×2 square are coloured in such a way that only diagonally touching
squares have the same colour.
Which grid sizes $m \times n$ (with $m, n \geq 3$) have a valid colouring?
10 Two persons play the following game with integers. The initial number is 2011^{2011}. The players move in turns. Each move consists of subtraction of an integer between 1 and 2010 inclusive, or division by 2011, rounding down to the closest integer when necessary. The player who first obtains a non-positive integer wins. Which player has a winning strategy?

11 Let $A B$ and $C D$ be two diameters of the circle C. For an arbitrary point P on C, let R and S be the feet of the perpendiculars from P to $A B$ and $C D$, respectively. Show that the length of $R S$ is independent of the choice of P.

12 Let P be a point inside a square $A B C D$ such that $P A: P B: P C$ is $1: 2: 3$. Determine the angle $\angle B P A$.

13 Let E be an interior point of the convex quadrilateral $A B C D$. Construct triangles $\triangle A B F, \triangle B C G, \triangle C D H$ and $\triangle D A I$ on the outside of the quadrilateral such that the similarities $\triangle A B F \sim \triangle D C E, \triangle B C G \sim$ $\triangle A D E, \triangle C D H \sim \triangle B A E$ and $\triangle D A I \sim \triangle C B E$ hold. Let P, Q, R and S be the projections of E on the lines $A B, B C, C D$ and $D A$, respectively. Prove that if the quadrilateral $P Q R S$ is cyclic, then

$$
E F \cdot C D=E G \cdot D A=E H \cdot A B=E I \cdot B C
$$

14 The incircle of a triangle $A B C$ touches the sides $B C, C A, A B$ at D, E, F, respectively. Let G be a point on the incircle such that $F G$ is a diameter. The lines $E G$ and $F D$ intersect at H. Prove that $C H \| A B$.

15 Let $A B C D$ be a convex quadrilateral such that $\angle A D B=\angle B D C$. Suppose that a point E on the side $A D$ satisfies the equality

$$
A E \cdot E D+B E^{2}=C D \cdot A E
$$

Show that $\angle E B A=\angle D C B$.

16 Let a be any integer. Define the sequence x_{0}, x_{1}, \ldots by $x_{0}=a, x_{1}=3$, and for all $n>1$

$$
x_{n}=2 x_{n-1}-4 x_{n-2}+3 .
$$

Determine the largest integer k_{a} for which there exists a prime p such that $p^{k_{a}}$ divides $x_{2011}-1$.

17 Determine all positive integers d such that whenever d divides a positive integer n, d will also divide any integer obtained by rearranging the digits of n.

18 Determine all pairs (p, q) of primes for which both $p^{2}+q^{3}$ and $q^{2}+p^{3}$ are perfect squares.
19 Let $p \neq 3$ be a prime number. Show that there is a non-constant arithmetic sequence of positive integers $x_{1}, x_{2}, \ldots, x_{p}$ such that the product of the terms of the sequence is a cube.

20 An integer $n \geq 1$ is called balanced if it has an even number of distinct prime divisors. Prove that there exist infinitely many positive integers n such that there are exactly two balanced numbers among $n, n+1, n+2$ and $n+3$.

